
Distributed Sensor Objects for Intrusion Detection Systems

Robert F. Erbacher
U.S. Army Research Laboratory

2800 Powder Mill Road
Adelphi, MD 20783

Robert.F.Erbacher.civ@mail.mil

Steve Hutchinson
ICF International Inc., for

U.S. Army Research Laboratory
2800 Powder Mill Road

Adelphi, MD 20783
Steve.E.Hutchinson.ctr@mail.mil

Abstract— Effective intrusion detection requires the analysis of
enormous volumes of network data collected from distributed
sensor objects. This analysis has most often been performed on
central servers. The alternative has been to limit data
collection to network flow data, with the side effect of reducing
intrusion detection effectiveness. This research examines an
alternative, namely the incorporation of more intelligent sensor
objects. We discuss the infrastructure required to support such
a metaphor, the potential tradeoffs, and a novel algorithm for
such an intelligent distributed sensor object.

Keywords- intrusion detection, distributed sensor objects,
network infrastructure, network performance, software
architecture.

I. INTRODUCTION
When network intrusion detection systems (IDS) are

discussed, what is being considered are the algorithms and
techniques being employed to analyze raw network-based
data for known malicious activity or the indications of
anomalies. However, there is a substantial infrastructure
required to provide the raw data to the analysis engine. The
first component of this infrastructure is a series of sensors
distributed around the network with the goal of collecting the
raw data. The optimal placement of such sensors is itself an
open problem. The goal is to ensure that the sensors possess
a purview over the entire network while minimizing data
duplication.

The sensors will send this raw data to a central
repository. This re-distribution of the data is intrinsically one
of the biggest problems with IDS infrastructures. Such data
redistribution, especially when attempting to be complete,
can significantly add to the network load and delay analysis
due to the time required to transmit the data. Typical
solutions are to send only a sample of the data or to limit
analysis to flow data; in either case, some packets can be
immediately categorized as not being of interest and filtered
out before transmission to the central server. Network flow
data essentially describes an entire transaction sequence from
initiation to termination as a single structure. The biggest
limitation of network flow data is that it does not incorporate
payload information, though this does greatly reduce the
volume of the data. The limiting of IDS analysis to flow data
can prevent certain types of analysis, e.g., malware
identification, since such identification requires payload
information. However, more tools appear to be geared

towards flow-level analysis than packet trace analysis due to
the reduced bandwidth and data storage requirements [13].

The challenge of needing to perform complete analysis,
i.e., through complete packet traces, and the requisite data
requirements of such complete analysis implies the need for
alternative solutions. Our approach is to examine novel
sensors that are more intelligent in their distribution of
computation between the sensors and the central server than
is currently done, as in techniques such as that by Maciá et
al. [7]. Tradeoffs remain to be resolved, e.g., how much
work should be performed on the distributed sensors and
how much work should be performed on the central server.
A key question is how this should be handled by the
infrastructure, what is an effective algorithm for such
distributed sensor objects, and what should be sent to the
central server. These questions are the focus of this research;
Barford et al. [1] more fully define the problem space.
Additionally, Spoor [14] describes practical experiences in
rolling out sensors running on COTS hardware.

II. RELATED WORK
While not providing relevant algorithmic techniques,

Jahnke [4] provides a relevant modular software
infrastructure that specifically allows for the specification of
sensor data preprocessing, analyzing, and storage
components. Clearly, our techniques can be integrated into
this architecture as relevant modules.

Maciá et al. [7] incorporated the idea of a smart
sensor that will adaptively transmit analyzed data to other
IDS components, e.g., a central server. Fundamentally,
their approach is based on using a fully distributed IDS,
performing IDS tasks on the sensor and distributing the
results of the analysis as needed.

Barford et al. [1] used simple threshold-based methods
for filtering at the sensors. They also employed analytic
methods for aggregation. Their filtering research most
closely relates to our work, though such simple thresholding
will clearly not provide detection results as good as our
proposed approach.

Eid et al. [2] discuss a mobile agent based approach.
Their approach, while using mobile agents to collect data
from sensors, collects all IDS related data. No attempt is
made to reduce the scope of the collected data.

Quanz et al. [12] explored the feasibility of fully
distributed anomaly detection. This is in contrast to the

hybrid approach we proposed. A full comparison of the two
approaches remains to be done.

An enormous amount of work has been performed in
distributed sensor networks. While this work covers areas
outside of intrusion detection and computer security in
general, a long-term goal must be to perform a full survey
and identify relevant research that can be applied to this
domain; the survey by Yick et al. provides a starting point
for this effort [17].

Related to the work on wireless sensor networks, Mamun
et al. [8] explored hierarchical models for intrusion detection.
This approach is particularly relevant to widely distributed,
geographically, networks. This approach essentially
implements a fully distributed IDS but in a hierarchical
fashion such that alerts ripple up the hierarchy.

Another domain seeing large-scale research efforts is in
the domain of data aggregation. McEachen et al. [9][10]
discuss an approach for data aggregation in sensor networks
in which there are tens, hundreds, or thousands of sensors.
This aggregation work focuses on performing all aggregation
on the central server, with the individual sensors still
reporting all data.

Additionally, a lot of related work has been performed in
the robotics field that cannot be ignored. For instance,
Stroupe et al. [15] examined the representation, fusion, and
communication of sensor data from multiple robots in noisy
scenarios.

While there is enormous work in relation to distributed
sensors and distributed IDSs, previous work has primarily
focused on fully distributed IDSs or has incorporated only
limited filtering mechanisms. Our approach to develop
sensor data reduction techniques in a hybrid sensor/central
server approach is clearly novel.

III. TECHNICAL APPROACH
The fundamentally distributed nature of intrusion

detection systems suggests that performance can be
improved by opportunistic utilization of sensor processing.
Consider that even the simplest sensors these days will have
extensive processing power; e.g., consider the compute
resources of even the simplest of today’s smart phones.
Clearly, the compute capability of the sensor can be used to
aid in the intrusion detection analysis process.

Thus, a key design decision in a distributed architecture
is where to locate this transmission process within the
pipeline of analytical processing.

 In most architectures, the sensor performs minimal
processing. Instead, all raw data must be transmitted to the
central server for processing. The alternate extreme would
require that the totality of processing be performed on each
sensor. This would move the data transmission step from
immediately after raw data collection to occur after
aggregation, but still preceding presentation, which must be
provided to the analyst. This architecture has been studied
theoretically and has been described as a “biologically-
inspired” or “human-immune-system inspired” IDS. The
work of J. Kim [2][6] is representative of this approach, in
which numerous, fine-grained software objects run
concurrently on each sensor. Each object is designed to

detect and alert on a specific signature or pattern. Such
objects often follow a discrete life cycle; they are instantiated
from a repository of object generators, execute on the sensor,
and are extinguished or replaced with updated configurations
in the future.

Table 1: Architectural process elements comprising an IDS;

distilled from [11].
Process

Element # Label and Description
1 Network traffic data collection
2 Information, i.e., feature, extraction
3 Tool execution. A range of tools may be

incorporated with distinct or overlapping
responsibilities; each tool will use individually
configured signatures and rule sets

4 Alert generation
5 Aggregation and detection
6 Presentation

The selection of an IDS architecture determines the

location of each of the process elements, table 1, in the IDS
process. IDS architectures, all the way back to syslog,
incorporate distributed data collection; collecting traffic from
multiple sites and networks with multiple sensors. In such
IDS architectures, all collected traffic is transmitted to a
central analysis facility for subsequent processing. Thus, we
see that process element 1 (traffic collection), from table 1, is
mapped to the sensor, while process elements 2-6 are
mapped to a central analysis facility.

Figure 1: Overall DSO architecture.

A. Transitioning to Distributed Sensors
Our distributed sensor object’s (DSO) software

architecture, figure 1, is intended to act as an experimental
infrastructure to allow exploration into the optimization of
data handling, information recognition, and to allow
prioritization of information feeds to a central analysis
facility while supporting existing IDS techniques.

Using DSO, we choose to perform process elements 1
and 2 on the sensor. This architecture has significant and
immediate advantages:

• Creation of feature vectors on the sensor creates
content that is optimized for information content;
noise, content that is not of interest, having been
removed.

• The resulting feature vectors possess the same
information, but smaller size, and thus can be
transmitted in less time than raw traffic.

• The feature vectors will allow the existing tools
and alert generators to function properly without
re-design and implementation.

• Sensor-side processing can enable a future
architectural change to support 2-phase detection,
whereby alerts are generated at the sensor, used as
indicators, and sent as priority traffic to the IDS.
Confirming data can then be requested only as
needed by a new 2-phase analysis and detection
tool-set on the central facility.

B. Design of a Distributed Sensor Object
A base DSO type, Figure 2, represents and stores

network flows in an efficient, indexed form. Each unified
modeling language (UML) object contains contextual
information, such as the timeframe of the contained-data, the
number of distinct nodes (cardinality), a pre-calculated
adjacency matrix, Figure 3, and indices into the adjacency
matrix. Cell values of the adjacency matrix reflect the
number of flows for each internet protocol (IP) address pair
(Source IP, Destination IP), which is referred to here as a
transaction. Each transaction can be described in more detail
using the network flow data. This combination of the
adjacency matrix, reflecting the topology of the static
network, and attributes for each transaction forms a 3-
dimensional structure, referred to here as a transaction hyper-
cube (tHc), which is an extension of traditional concepts of
adjacency matrices [16].

Using this design model allows detailed data for each
transaction to be easily indexed and returned in response to
an analyst’s query. The practice of using disk-based linear
files as the infrastructure’s pseudo database containing
capture data cannot support the associations and indexing
proposed by our model. Thus, this linear file based approach
will require a linear, sequential search to generate a response
to each analyst query. By forming a pre-indexed structure
based upon the ip_address or node_id parameters, we can
optimize query requests based upon the parameter of interest.
Similar indexing can be applied to sets of port numbers,
chronological time sequences, or packet byte counts, all of
which are available in a network flow file format. In practice,
a storage structure with indexing of ip_addresses is preferred
since the ip_address is the most common primary identifier
for data retrieval. A chronological sequence of traffic data
could also be generated from the tHc to feed certain tools
and algorithms. By definition and construction, flow-files are
sets of packet data stored in time order, thus no additional
processing is required other than locating the appropriate
starting and ending packets in the time series.

C. DSO Method: Time series request-responder
A representative query and response scenario is as

follows:
series_from(IP1, IP2, startTime,
endTime) -> sensor X

This query requests the time-series data corresponding to
transactions between IP1 and IP2 during the specified time
span; in essence, this query is identifying communication
between the two hosts represented by their corresponding IP
addresses during the period beginning at startTime and
ending at endTime. A series of tuples will be returned by the
DSO on sensor X pertaining to these transactions. This form
of query is common when an analyst needs to report on the
specific activity of an IP address within a known time
interval. Other common IDS tools are used to perform set
intersection operations, such as comparison of all IPs seen
with one or more sets of known IPs, such as whitelists,
blacklists, site directories, etc. The most effective use of the
tHc data structure for this task is to query the ip2node index
for the desired time span and return those parameters to the

Figure 2: The base DSO type exemplified through UML.

IDS tool. The intersection operation would then generate a
subsequent (IP1, *) query to obtain all known transactions
and attributes pertaining to IP1, for further processing by the
tool. In performing this task as a sequence of two steps, we
save on unnecessary processing, i.e., unneeded data transfers,
and generate result data only when needed by the tool.

Figure 3: Example adjacency matrix of tHc.

D. DSO - Content Feature Vectors
Advanced IDSs can often process traffic data other than

flow files. Modern threats often encode communications in
textual content, often within HTTP traffic. Effective
detection of these threats depends on using tools that can
analyze such traffic since flow files do not contain the
content to reveal these communications. We show an
extended implementation of DSO, Figure 4, with data and
methods to represent such HTTP traffic. Consider the below
snort rule taken from bleeding snort [18]. This rule has
several features indicative of our concept of feature vectors.
First, there must be a human readable string “PRIVMSG”,
indicated by the content keyword. Second, this text must
occur within the first 8 bytes, as indicated by the depth
keyword. Third, this text is case insensitive, directed by the
nocase keyword. Fourth, the maximum size of the payload
must be 128 bytes, as indicated by the dsize keyword.

alert tcp $HOME_NET any ->
$EXTERNAL_NET !6661:6668 (msg:
"BLEEDING-SNORT ATTACK RESPONSE IRC -
Private message on non-std port";
flow: to_server,established; dsize:
<128; content:"PRIVMSG "; nocase;
offset: 0; depth: 8; tag:
session,300,seconds; classtype:
trojan-activity; sid: 2000347; rev:5;
)

As shown in Figure 4, the basic tHc structure has been
extended to include sequences of packet content for each
transaction. Furthermore, the parsing of packet content is

Figure 4: Extended implementation of tHc to support
internet string content from associated transaction types, e.g.,
HTML, ftp, SMTP, etc.

driven by a content model consisting of multiple dimensions
of evidence. The content model shows where within each
packet to obtain specific pieces evidence. An alternative to
actually storing all of the packet content in the database itself
would be to have the structure point to the physical location
on disk where the specific packet elements can be found.

Given a query and the evidence locations from the DSO
structure, the DSO algorithms creates a tuple of the feature
vectors corresponding to the parsed evidence from each
packet. The DSO can then stream these feature vectors to the
appropriate tools in the IDS to drive primary detection
algorithms and confirming evidence collectors. Tools and
other detector algorithms can be designed to utilize one or
more such dimensions of evidence. Since these dimensions
are known a priori, the DSO feature vector generator will
parse, represent, and return evidence corresponding to these
requested dimensions. All other content can be suppressed
since it is the equivalent of noise for the tool and detection
processes. This dimension-identification and parsing serves
to effect a lossless compression of traffic since the discarded
data could not have triggered an alert or a detection in the
tool processes.

A query request to generate feature vectors from internet
strings corresponding to a list of specified dimensions will
appear as follows:

generate_fv(
startTime,
endTime,
{IP,PORT,PROTO,TIME,REFERER,
USERAGENT,URL,HOST}
) -> sensor X

E. DSO - Extraction of Selected Dimensions of Evidence
Table 2 illustrates an excerpt of HTTP capture data in

plain text format, which retains all raw data from the capture
(http.cap from

http://wiki.wireshark.org/SampleCaptures).
As mentioned, the goal will be for the analyst to a priori

create a list of desired dimensions to be used to create feature
vectors from the raw traffic. The goal will be for these
dimensions to accurately retain the information that can be
used by detector and tool processes. An example of the

Table 2: Raw data from captured HTTP traffic.

0.911310 145.254.160.237 65.208.228.223 HTTP 533 GET /download.html HTTP/1.1

Frame 4: 533 bytes on wire (4264 bits), 533 bytes captured (4264 bits)
Src: 145.254.160.237, Dst: 65.208.228.223
Src Port: tip2 (3372), Dst Port: http (80), Seq: 1, Ack: 1, Len: 479
Hypertext Transfer Protocol

..E....E@.........A....,.P8....La.P.%..X..GET /download.html HTTP/1.1..Host:
www.ethereal.com..User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6)
Gecko/20040113..Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,im
age/jpeg,image/gif;q=0.2,*/*;q=0.1..Accept-Language: en-us,en;q=0.5..Accept-Encoding:
gzip,deflate..Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7..Keep-Alive: 300..Connection:
keep-alive..Referer: http://www.ethereal.com/development.html....4.846969 65.208.228.223
145.254.160.237 HTTP 478 HTTP/1.1 200 OK (text/html)

Frame 38: 478 bytes on wire (3824 bits), 478 bytes captured (3824 bits)
Src: 65.208.228.223, Dst: 145.254.160.237
Src Port: http (80), Dst Port: tip2 (3372), Seq: 17941, Ack: 480, Len: 424
Hypertext Transfer Protocol
Line-based text data: text/html

HTTP/1.1 200 OK..Date: Thu, 13 May 2004 10:17:12GMT..Server: Apache..Last-Modified: Tue, 20
Apr 2004 13:17:00 GMT..ETag: "9a01a-4696-7e354b00"..Accept-Ranges: bytes..Content-Length:
18070..Keep-Alive: timeout=15, max=100..Connection: Keep-Alive..Content-Type: text/html;
charset=ISO-8859-1....<?xml version="1.0" encoding="UTF-8"?>.<!DOCTYPE html. PUBLIC "-
//W3C//DTD XHTML 1.0 Strict//EN". "DTD/xhtml1-strict.dtd">.<html
xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">. <head>. <title>Ethereal:
Download</title>. <style type="text/css" media="all">..@import url("mm/css/ethereal-3-
0.css");. </style>.</head>. <body>. <div class="top">. <table width="100%"
cellspacing="0" cellpadding="0" border="0" summary="">. <tr>. <tdvalign="middle"
width="1">.. <img class="logo" title="Ethereal home" src="mm/image/elogo-64-
trans.gif" alt="" width="64" height="64">.</td>. <td align="left"
valign="middle">. <h2>Ethereal</h2>. <h5 style="white-space:
nowrap;">Download</h5>. </td>. <td align="right">.. <table style="margin-
right: 10px;" cellspacing="0" cellpadding="0" border="0" summary="">.

feature vectors parsed from the raw data in table 2 is shown
in table 3.

The novel feature vector concept provides several other
advantages. First, the feature vectors allow for the automatic
aggregation of data from multiple sources or tools. By
having the analyst identify the feature vectors a priori for
each data source or tool result, the analyst in essence is
identifying a schema or semantic organization of the data
such that it can be aggregated based on consistent features
across data sources and tool results. Second, the semantic
content provided by the feature vectors provides a more
meaningful organization for analysis and storage in
databases. Third, the feature vectors can potentially inspire
additional analysis paradigms, given the large body of
research on semantic analysis [3].

F. tHc Data-Structure
The source code listing in table 4 is a reference

implementation of the tHc data-store as a Perl Storable
object. The anonymized excerpt shows the overall
organization of instance metadata, forward and reverse
indices, and node flows with corresponding time series
attributes. These tHc structures are created in memory for
rapid access by the DSO to support queries and generation of
feature-vectors. The Perl Storable object methods provide
functions to save the data-structure to disk, and to restore
such files again as in-memory data-stores.

G. Validation
To validate the accuracy and completeness of tHc for

flow data, we generated tHc data structures from
representative flow files. Typical results of the conversion
result in the following characteristics:

• Raw data flow file size 2.1MB
• Raw number nodes 1527
• tHc storage object size 1.6MB
• tHc number nodes 1527

The information-to-noise ratio for a flow file is
approximately 1:1 since each data element is potentially of
interest to the IDS processing. The size difference
exemplified by this flow file is due to different
representations of data, time, and numbers in packed versus
string representations. The two representations incorporate
identical node counts indicating that no information has been
lost in the conversion; the equivalent information has been
structured in memory to optimize DSO query requests.

To validate the feature-vector generation process for
internet string traffic, the DSO must parse the raw traffic to
preserve only the evidence dimensions requested. As a result,
the volume of data of the feature-vectors will be less than the
volume of the raw data. It is important that the feature-
vectors contain equivalent information to support the tool
and detection processes. We show that while the volume of
data is decreased, the resulting tool/alert generation is

Table 3: Select dimensions and associated feature vectors from the raw HTTP data in table 2. These feature vectors
represent the content usable by IDS tools and detectors; approximately a 50% reduction in data load is exhibited.

Dimension Sample Values

IP / PORT /
TIME /
PROTO

0.911310 145.254.160.237:3372 65.208.228.223:80 HTTP 533

URL GET /download.html HTTP/1.1

Referer Referer:
http://www.ethereal.com/development.html

User-Agent User-Agent:
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6) Gecko/20040113

Host Host:
www.ethereal.com

 4.846969 65.208.228.223:80 145.254.160.237:3372 HTTP 478

Content charset=ISO-8859-1....<?xml version="1.0" encoding="UTF-8"?>.<!DOCTYPE html.
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN". "DTD/xhtml1-strict.dtd">.<html
xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">. <head>.
<title>Ethereal: Download</title>. <style type="text/css"
media="all">..@import url("mm/css/ethereal-3-0.css");. </style>.</head>.
<body>. <div class="top">. <table width="100%" cellspacing="0"
cellpadding="0" border="0" summary="">. <tr>. <tdvalign="middle"

statistically equivalent. In practice, the feature-vector set
requires only 20% of the volume to produce a slight increase
in alert count. This +0.3% discrepancy is due to differences
in the alert generation algorithms; in the feature-vector case,
multiple alerts can be generated from the appearance of
multiple string literals in the same packet.

• # of alerts generated using raw data 47746
• # of alerts generated using tHc 47889
• Volume of alert data using raw data 43MB
• Volume of alert data using tHc 8MB

IV. FUTURE WORK
One task for future work will be to explore the tradeoffs

inherent in allowing the transmission of distributed data
collection to a central server more fully. For instance, as
sensor capabilities improve, more computation can be

offloaded to the sensors. However, this has certain
limitations such as the impact of a compromised sensor or
network linkage. There is also the potential for having more
than two-phases in the architecture, such as: collection and
partial processing at the sensor, aggregation and final
processing on a central server, and presentation on a mobile
device. We must identify the complete performance
requirements and capability distribution techniques for
maximum performance given a specific network
infrastructure and associated high bandwidth network.
Allowing this distribution to be determined and adjusted
dynamically is the ultimate goal.

V. CONCLUSIONS
We designed and implemented a novel IDS architecture.

This resulted in the development of a distributed sensor

Table 4: Sample Implementation of tHc as an associative memory array through a Perl Storable object generated from
CISCO NetFlow (v5) traffic.

SVAR1 = {
 ‘tHc_version’ => 3,
 ‘flows’ => {
 ‘A.B.C.92’ => {
 ‘A.B.C.221’ => {
 ‘srcport’=> ’34,’,
 ‘prot’ => ‘TCP(0x06),’,
 …
 ‘A.B.C.71’ => {
 ‘A.B.C.333’ => {
 ‘srcport’=> ‘8,8,’,
 ‘prot’ => ‘IPv6/TCP(0x06),IPv6/TCP(0x06),’,
 ‘tcp_flags’ => ‘****APRS*,****APRS*,’,
 ‘AdjMat_coords’ => {
 ‘y’ => 102,
 ‘x’ => 122
 },
 ‘svr_bytes’ => ‘5362,5362,’,
 ‘clt_pkts’ => ’12,12,’,
 ‘cli_bytes’ => ‘2704,2704,’,
 ‘srcaddr’ => ‘A.B.C.71’,
 ‘durations’ => ’00:01:25.6727854,00:01:26.968210,’,
 ‘dstaddr’ => ‘A.B.C.333’,

Individual Flows
and Times

 ‘metadata’ => {
 ‘nodecounts’ => 1521,
 ‘storable’ => ‘20110712.11.xxx.storable’,
 ‘lastTime’ => 1310471999,
 ‘firstTime’ => 1310468402,
 ‘srcfile’ => ‘20110712.11.xxx’,
 ‘edgecount’ => 5108
 },

Context Data for the
Instance

 ‘indices’ => {
 ‘indx2ip’ => {
 ‘1049’ => ‘A.B.C.90’,
 ‘127’ => ‘A.B.C.220’,
 ‘71’ => ‘A.B.C.143’,
 ‘1481’ => ‘A.B.C.61’,
 ‘882’ => ‘A.B.C.37’,

INDX to IP
And

IP to INDX

object that incorporates features in the sensor data collection
process that optimizes the overall IDS process. This
developed sensor object satisfies the following objectives:

• Collect all data, dependent of course on the storage
capacity of the sensor

• Parse raw network traffic to extract only the specified
evidence dimensions

• Generate lossless feature-vectors sufficiently
representing the original raw network data to drive the
IDS detection algorithms

• Create a query-optimized local data store for the raw
data

• Support a query responder to select and return precise
feature-vectors on request

• Support a feature-vector stream to feed traffic to new
and legacy IDS tools, removing non-interesting
evidence, e.g., noise

• Support an extensible data-set generator, as would be
needed to generate a network graph for data
visualization at the client

• Support an object-oriented interface API,
implementable in any modern language environment,
including Perl, Python, C++, Java, etc.

In addition, we provided examples taken directly from
the reference implementation. This reference implementation
was used to provide validation, showing that the proposed
sensor design not only reduces the amount of data needing to
be transmitted to the central server but also maintains a
statistically similar number of generated alerts. A secondary
effect resulted in that the volume of the generated alert
output also occupies significantly less data space.

REFERENCES
[1] P. Barford, S. Jha, and V. Yegneswaran, “Fusion and filtering in

distributed intrusion detection systems,” In Proceedings of the 42nd
Annual Allerton Conference on Communication, Control and
Computing, 2004.

[2] Mohamad Eid, Hassan Artail, Ayman Kayssi, and Ali Chehab, “A
New Mobile Agent-Based Intrusion Detection System Using
Distributed Sensors,” in Proceedings of the IEEE International
Conference on Pervasive Services (ICPS’2004), March 2004, Beirut,
Lebanon, pp. 114-125.

[3] Cliff Goddard, Semantic Analysis: A Practical Introduction, Oxford
University Press, USA, 2011.

[4] M. Jahnke, 2002, “An Open and Secure Infrastructure for Distributed
Intrusion Detection Sensors,” Proceedings of the NATO Regional
Conference on Military Communications and Information Systems
RCMCIS 2002, 9-11 October 2002. [19] P. Baskerville, 2006.

[5] J. Kim and P. Bentley, “Towards an artificial immune system for
network intrusion detection: An investigation of dynamic clonal
selection,” In Proceeding of the Congress on Evolutionary
Computation (CEC-2002), Honolulu, Hawaii, pp. 1015 - 1020, May
2002.

[6] J. Kim and P. J Bentley, “Towards an artificial immune system for
network intrusion detection: An investigation of clonal selection with
a negative selection operator,” In Proceeding of the Congress on
Evolutionary Computation (CEC-2001), Seoul, Korea, pp. 1244-
1252, 2001.

[7] Maciá, -Pé, F. rez, F. Mora-Gimeno, D. Marcos-Jorquera, Gil-Martí,
J.A. nez-Abarca, H. Ramos-Morillo, I. Lorenzo-Fonseca, “Network
Intrusion Detection System Embedded on a Smart Sensor,” IEEE

Trans. on Industrial Electronics, vol. 58, no. 3, pp. 722 - 732, March
2011.

[8] Mohammad Mamun and A.F.M. Kabir, “Hierarchical Design Based
Intrusion Detection System for Wireless Ad Hoc Sensor Networks,”
International Journal of Network Security & Its Applications
(IJNSA), Vol.2, No.3, July 2010, pp. 102-117.

[9] John C. McEachen and Cheng Wai Kah. 2007, “An analysis of
distributed sensor data aggregation for network intrusion detection,”
Microprocess. Microsyst. 31, 4 (June 2007), 263-272.

[10] John C. McEachen, Cheng Kah Wai, and Vonda L. Olsavsky. 2006,
“Aggregating Distributed Sensor Data for Network Intrusion
Detection,”. In Proceedings of the 11th IEEE Symposium on
Computers and Communications (ISCC '06). IEEE Computer
Society, Washington, DC, USA, 916-922.

[11] T. R. Metcalf and L. J. Lapadula, “Intrusion Detection System
Requirements: A Capabilities Description in Terms of the Network
Monitoring and Assessment Module of CSAP21,” Mitre Paper #
MP00B0000046, September 2000.

[12] B. Quanz, H. Fei, J. Huan, J.B. Evans, V. Frost, G.J. Minden, D.D.
Deavours, L. Searl, D. DePardo, M. Kuehnhausen, D. Fokum, M.
Zeets, and A. Oguna, “Anomaly Detection with Sensor Data for
Distributed Security,” in Proc. ICCCN, 2009, pp.1-6.

[13] Chakchai So-In, “A Survey of Network Traffic Monitoring and
Analysis Tools,” http://www.cse.wustl.edu/~jain/cse567-
06/ftp/net_traffic_monitors3/

[14] Spoor, Rogier, “A Distributed Intrusion Detection System Based on
Passive Sensors,” Surfnet, 11 Aug. 2005. 3 Apr. 2006.

[15] A.W. Stroupe, M.C. Martin, and T.R. Balch, “Distributed Sensor
Fusion for Object Position Estimation by Multi-Robot Systems,” in
Proc. ICRA, 2001, pp.1092-1098.

[16] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos, “Less is More: Compact
Matrix Decomposition for Large Sparse Graphs,” Carnegie Mellon
University, Computer Science Department, 2007, Paper 532.

[17] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal, 2008,
“Wireless sensor network survey,” Comput. Netw. 52, 12 (August
2008), 2292-2330.

[18] Bleeding Snort, http://www.bleedingsnort.com/

	I. Introduction
	II. Related Work
	III. Technical Approach
	A. Transitioning to Distributed Sensors
	B. Design of a Distributed Sensor Object
	C. DSO Method: Time series request-responder
	D. DSO - Content Feature Vectors
	E. DSO - Extraction of Selected Dimensions of Evidence
	F. tHc Data-Structure
	G. Validation

	Table 4: Sample Implementation of tHc as an associative memory array through a Perl Storable object generated from CISCO NetFlow (v5) traffic.
	SVAR1 = {
	Individual Flows and Times
	 ‘metadata’ => {
	Context Data for the Instance
	 ‘indices’ => {
	INDX to IP
	IV. Future Work
	V. Conclusions
	References

