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Abstract— Effective intrusion detection requires the analysis of 
enormous volumes of network data collected from distributed 
sensor objects. This analysis has most often been performed on 
central servers. The alternative has been to limit data 
collection to network flow data, with the side effect of reducing 
intrusion detection effectiveness. This research examines an 
alternative, namely the incorporation of more intelligent sensor 
objects. We discuss the infrastructure required to support such 
a metaphor, the potential tradeoffs, and a novel algorithm for 
such an intelligent distributed sensor object. 

Keywords- intrusion detection, distributed sensor objects, 
network infrastructure, network performance, software 
architecture. 

I.  INTRODUCTION 
When network intrusion detection systems (IDS) are 

discussed, what is being considered are the algorithms and 
techniques being employed to analyze raw network-based 
data for known malicious activity or the indications of 
anomalies. However, there is a substantial infrastructure 
required to provide the raw data to the analysis engine. The 
first component of this infrastructure is a series of sensors 
distributed around the network with the goal of collecting the 
raw data. The optimal placement of such sensors is itself an 
open problem. The goal is to ensure that the sensors possess 
a purview over the entire network while minimizing data 
duplication. 

The sensors will send this raw data to a central 
repository. This re-distribution of the data is intrinsically one 
of the biggest problems with IDS infrastructures. Such data 
redistribution, especially when attempting to be complete, 
can significantly add to the network load and delay analysis 
due to the time required to transmit the data. Typical 
solutions are to send only a sample of the data or to limit 
analysis to flow data; in either case, some packets can be 
immediately categorized as not being of interest and filtered 
out before transmission to the central server. Network flow 
data essentially describes an entire transaction sequence from 
initiation to termination as a single structure. The biggest 
limitation of network flow data is that it does not incorporate 
payload information, though this does greatly reduce the 
volume of the data. The limiting of IDS analysis to flow data 
can prevent certain types of analysis, e.g., malware 
identification, since such identification requires payload 
information. However, more tools appear to be geared 

towards flow-level analysis than packet trace analysis due to 
the reduced bandwidth and data storage requirements [13]. 

The challenge of needing to perform complete analysis, 
i.e., through complete packet traces, and the requisite data 
requirements of such complete analysis implies the need for 
alternative solutions. Our approach is to examine novel 
sensors that are more intelligent in their distribution of 
computation between the sensors and the central server than 
is currently done, as in techniques such as that by Maciá et 
al. [7]. Tradeoffs remain to be resolved, e.g., how much 
work should be performed on the distributed sensors and 
how much work should be performed on the central server. 
A key question is how this should be handled by the 
infrastructure, what is an effective algorithm for such 
distributed sensor objects, and what should be sent to the 
central server. These questions are the focus of this research; 
Barford et al. [1] more fully define the problem space. 
Additionally, Spoor [14] describes practical experiences in 
rolling out sensors running on COTS hardware. 

II. RELATED WORK 
While not providing relevant algorithmic techniques, 

Jahnke [4] provides a relevant modular software 
infrastructure that specifically allows for the specification of 
sensor data preprocessing, analyzing, and storage 
components. Clearly, our techniques can be integrated into 
this architecture as relevant modules. 

Maciá et al. [7] incorporated the idea of a smart 
sensor that will adaptively transmit analyzed data to other 
IDS components, e.g., a central server. Fundamentally, 
their approach is based on using a fully distributed IDS, 
performing IDS tasks on the sensor and distributing the 
results of the analysis as needed. 

Barford et al. [1] used simple threshold-based methods 
for filtering at the sensors. They also employed analytic 
methods for aggregation. Their filtering research most 
closely relates to our work, though such simple thresholding 
will clearly not provide detection results as good as our 
proposed approach. 

Eid et al. [2] discuss a mobile agent based approach. 
Their approach, while using mobile agents to collect data 
from sensors, collects all IDS related data. No attempt is 
made to reduce the scope of the collected data. 

Quanz et al. [12] explored the feasibility of fully 
distributed anomaly detection. This is in contrast to the 



hybrid approach we proposed. A full comparison of the two 
approaches remains to be done. 

An enormous amount of work has been performed in 
distributed sensor networks. While this work covers areas 
outside of intrusion detection and computer security in 
general, a long-term goal must be to perform a full survey 
and identify relevant research that can be applied to this 
domain; the survey by Yick et al. provides a starting point 
for this effort [17]. 

Related to the work on wireless sensor networks, Mamun 
et al. [8] explored hierarchical models for intrusion detection. 
This approach is particularly relevant to widely distributed, 
geographically, networks. This approach essentially 
implements a fully distributed IDS but in a hierarchical 
fashion such that alerts ripple up the hierarchy. 

Another domain seeing large-scale research efforts is in 
the domain of data aggregation. McEachen et al. [9][10] 
discuss an approach for data aggregation in sensor networks 
in which there are tens, hundreds, or thousands of sensors. 
This aggregation work focuses on performing all aggregation 
on the central server, with the individual sensors still 
reporting all data.  

Additionally, a lot of related work has been performed in 
the robotics field that cannot be ignored. For instance, 
Stroupe et al. [15] examined the representation, fusion, and 
communication of sensor data from multiple robots in noisy 
scenarios. 

While there is enormous work in relation to distributed 
sensors and distributed IDSs, previous work has primarily 
focused on fully distributed IDSs or has incorporated only 
limited filtering mechanisms. Our approach to develop 
sensor data reduction techniques in a hybrid sensor/central 
server approach is clearly novel. 

III. TECHNICAL APPROACH 
The fundamentally distributed nature of intrusion 

detection systems suggests that performance can be 
improved by opportunistic utilization of sensor processing. 
Consider that even the simplest sensors these days will have 
extensive processing power; e.g., consider the compute 
resources of even the simplest of today’s smart phones. 
Clearly, the compute capability of the sensor can be used to 
aid in the intrusion detection analysis process.  

Thus, a key design decision in a distributed architecture 
is where to locate this transmission process within the 
pipeline of analytical processing.  

 In most architectures, the sensor performs minimal 
processing. Instead, all raw data must be transmitted to the 
central server for processing. The alternate extreme would 
require that the totality of processing be performed on each 
sensor. This would move the data transmission step from 
immediately after raw data collection to occur after 
aggregation, but still preceding presentation, which must be 
provided to the analyst. This architecture has been studied 
theoretically and has been described as a “biologically-
inspired” or “human-immune-system inspired” IDS. The 
work of J. Kim [2][6] is representative of this approach, in 
which numerous, fine-grained software objects run 
concurrently on each sensor. Each object is designed to 

detect and alert on a specific signature or pattern. Such 
objects often follow a discrete life cycle; they are instantiated 
from a repository of object generators, execute on the sensor, 
and are extinguished or replaced with updated configurations 
in the future. 

 
Table 1: Architectural process elements comprising an IDS; 

distilled from [11]. 
Process 

Element # Label and Description 
1 Network traffic data collection 
2 Information, i.e., feature, extraction 
3 Tool execution. A range of tools may be 

incorporated with distinct or overlapping 
responsibilities; each tool will use individually 
configured signatures and rule sets  

4 Alert generation 
5 Aggregation and detection 
6 Presentation 

 
The selection of an IDS architecture determines the 

location of each of the process elements, table 1, in the IDS 
process. IDS architectures, all the way back to syslog, 
incorporate distributed data collection; collecting traffic from 
multiple sites and networks with multiple sensors. In such 
IDS architectures, all collected traffic is transmitted to a 
central analysis facility for subsequent processing. Thus, we 
see that process element 1 (traffic collection), from table 1, is 
mapped to the sensor, while process elements 2-6 are 
mapped to a central analysis facility. 

 

 
Figure 1: Overall DSO architecture. 

A. Transitioning to Distributed Sensors 
Our distributed sensor object’s (DSO) software 

architecture, figure 1,  is intended to act as an experimental 
infrastructure to allow exploration into the optimization of 
data handling, information recognition, and to allow 
prioritization of information feeds to a central analysis 
facility while supporting existing IDS techniques. 

Using DSO, we choose to perform process elements 1 
and 2 on the sensor. This architecture has significant and 
immediate advantages: 



• Creation of feature vectors on the sensor creates 
content that is optimized for information content; 
noise, content that is not of interest, having been 
removed. 

• The resulting feature vectors possess the same 
information, but smaller size, and thus can be 
transmitted in less time than raw traffic. 

• The feature vectors will allow the existing tools 
and alert generators to function properly without 
re-design and implementation. 

• Sensor-side processing can enable a future 
architectural change to support 2-phase detection, 
whereby alerts are generated at the sensor, used as 
indicators, and sent as priority traffic to the IDS. 
Confirming data can then be requested only as 
needed by a new 2-phase analysis and detection 
tool-set on the central facility. 

B. Design of a Distributed Sensor Object 
A base DSO type, Figure 2, represents and stores 

network flows in an efficient, indexed form. Each unified 
modeling language (UML) object contains contextual 
information, such as the timeframe of the contained-data, the 
number of distinct nodes (cardinality), a pre-calculated 
adjacency matrix, Figure 3, and indices into the adjacency 
matrix. Cell values of the adjacency matrix reflect the 
number of flows for each internet protocol (IP) address pair 
(Source IP, Destination IP), which is referred to here as a 
transaction. Each transaction can be described in more detail 
using the network flow data. This combination of the 
adjacency matrix, reflecting the topology of the static 
network, and attributes for each transaction forms a 3-
dimensional structure, referred to here as a transaction hyper-
cube (tHc), which is an extension of traditional concepts of 
adjacency matrices [16]. 

Using this design model allows detailed data for each 
transaction to be easily indexed and returned in response to 
an analyst’s query. The practice of using disk-based linear 
files as the infrastructure’s pseudo database containing 
capture data cannot support the associations and indexing 
proposed by our model. Thus, this linear file based approach 
will require a linear, sequential search to generate a response 
to each analyst query. By forming a pre-indexed structure 
based upon the ip_address or node_id parameters, we can 
optimize query requests based upon the parameter of interest. 
Similar indexing can be applied to sets of port numbers, 
chronological time sequences, or packet byte counts, all of 
which are available in a network flow file format. In practice, 
a storage structure with indexing of ip_addresses is preferred 
since the ip_address is the most common primary identifier 
for data retrieval. A chronological sequence of traffic data 
could also be generated from the tHc to feed certain tools 
and algorithms. By definition and construction, flow-files are 
sets of packet data stored in time order, thus no additional 
processing is required other than locating the appropriate 
starting and ending packets in the time series. 

C. DSO Method: Time series request-responder 
A representative query and response scenario is as 

follows: 
series_from(IP1, IP2, startTime, 
endTime) -> sensor X 

This query requests the time-series data corresponding to 
transactions between IP1 and IP2 during the specified time 
span; in essence, this query is identifying communication 
between the two hosts represented by their corresponding IP 
addresses during the period beginning at startTime and 
ending at endTime. A series of tuples will be returned by the 
DSO on sensor X pertaining to these transactions. This form 
of query is common when an analyst needs to report on the 
specific activity of an IP address within a known time 
interval. Other common IDS tools are used to perform set 
intersection operations, such as comparison of all IPs seen 
with one or more sets of known IPs, such as whitelists, 
blacklists, site directories, etc. The most effective use of the 
tHc data structure for this task is to query the ip2node index 
for the desired time span and return those parameters to the 

 
Figure 2: The base DSO type exemplified through UML. 

 



IDS tool. The intersection operation would then generate a 
subsequent (IP1, *) query to obtain all known transactions 
and attributes pertaining to IP1, for further processing by the 
tool. In performing this task as a sequence of two steps, we 
save on unnecessary processing, i.e., unneeded data transfers, 
and generate result data only when needed by the tool.  

 

 
Figure 3: Example adjacency matrix of tHc. 

 

D.  DSO - Content Feature Vectors 
Advanced IDSs can often process traffic data other than 

flow files. Modern threats often encode communications in 
textual content, often within HTTP traffic. Effective 
detection of these threats depends on using tools that can 
analyze such traffic since flow files do not contain the 
content to reveal these communications. We show an 
extended implementation of DSO, Figure 4, with data and 
methods to represent such HTTP traffic. Consider the below 
snort rule taken from bleeding snort [18]. This rule has 
several features indicative of our concept of feature vectors. 
First, there must be a human readable string “PRIVMSG”, 
indicated by the content keyword. Second, this text must 
occur within the first 8 bytes, as indicated by the depth 
keyword. Third, this text is case insensitive, directed by the 
nocase keyword. Fourth, the maximum size of the payload 
must be 128 bytes, as indicated by the dsize keyword.  

alert tcp $HOME_NET any -> 
$EXTERNAL_NET !6661:6668 (msg: 
"BLEEDING-SNORT ATTACK RESPONSE IRC - 
Private message on non-std port"; 
flow: to_server,established; dsize: 
<128; content:"PRIVMSG "; nocase; 
offset: 0; depth: 8; tag: 
session,300,seconds; classtype: 
trojan-activity; sid: 2000347; rev:5; 
) 

As shown in Figure 4, the basic tHc structure has been 
extended to include sequences of packet content for each 
transaction. Furthermore, the parsing of packet content is 

 
Figure 4: Extended implementation of tHc to support 
internet string content from associated transaction types, e.g., 
HTML, ftp, SMTP, etc. 



driven by a content model consisting of multiple dimensions 
of evidence. The content model shows where within each 
packet to obtain specific pieces evidence. An alternative to 
actually storing all of the packet content in the database itself 
would be to have the structure point to the physical location 
on disk where the specific packet elements can be found.  

Given a query and the evidence locations from the DSO 
structure, the DSO algorithms creates a tuple of the feature 
vectors corresponding to the parsed evidence from each 
packet. The DSO can then stream these feature vectors to the 
appropriate tools in the IDS to drive primary detection 
algorithms and confirming evidence collectors. Tools and 
other detector algorithms can be designed to utilize one or 
more such dimensions of evidence. Since these dimensions 
are known a priori, the DSO feature vector generator will 
parse, represent, and return evidence corresponding to these 
requested dimensions. All other content can be suppressed 
since it is the equivalent of noise for the tool and detection 
processes. This dimension-identification and parsing serves 
to effect a lossless compression of traffic since the discarded 
data could not have triggered an alert or a detection in the 
tool processes. 

A query request to generate feature vectors from internet 
strings corresponding to a list of specified dimensions will 
appear as follows: 

generate_fv( 
startTime,  
endTime, 
{IP,PORT,PROTO,TIME,REFERER,
USERAGENT,URL,HOST} 
) -> sensor X 

E. DSO - Extraction of Selected Dimensions of Evidence 
Table 2 illustrates an excerpt of HTTP capture data in 

plain text format, which retains all raw data from the capture 
(http.cap from 

http://wiki.wireshark.org/SampleCaptures). 
As mentioned, the goal will be for the analyst to a priori 

create a list of desired dimensions to be used to create feature 
vectors from the raw traffic. The goal will be for these 
dimensions to accurately retain the information that can be 
used by detector and tool processes. An example of the 

Table 2: Raw data from captured HTTP traffic. 

0.911310 145.254.160.237 65.208.228.223 HTTP 533 GET /download.html HTTP/1.1  
 
Frame 4: 533 bytes on wire (4264 bits), 533 bytes captured (4264 bits) 
Src: 145.254.160.237, Dst: 65.208.228.223 
Src Port: tip2 (3372), Dst Port: http (80), Seq: 1, Ack: 1, Len: 479 
Hypertext Transfer Protocol 
 
.. ...........E....E@.........A....,.P8....La.P.%..X..GET /download.html HTTP/1.1..Host: 
www.ethereal.com..User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6) 
Gecko/20040113..Accept: 
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,im
age/jpeg,image/gif;q=0.2,*/*;q=0.1..Accept-Language: en-us,en;q=0.5..Accept-Encoding: 
gzip,deflate..Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7..Keep-Alive: 300..Connection: 
keep-alive..Referer: http://www.ethereal.com/development.html....4.846969 65.208.228.223 
145.254.160.237 HTTP 478 HTTP/1.1 200 OK (text/html) 
 
Frame 38: 478 bytes on wire (3824 bits), 478 bytes captured (3824 bits) 
Src: 65.208.228.223, Dst: 145.254.160.237 
Src Port: http (80), Dst Port: tip2 (3372), Seq: 17941, Ack: 480, Len: 424 
Hypertext Transfer Protocol 
Line-based text data: text/html 
 
HTTP/1.1 200 OK..Date: Thu, 13 May 2004 10:17:12GMT..Server: Apache..Last-Modified: Tue, 20 
Apr 2004 13:17:00 GMT..ETag: "9a01a-4696-7e354b00"..Accept-Ranges: bytes..Content-Length: 
18070..Keep-Alive: timeout=15, max=100..Connection: Keep-Alive..Content-Type: text/html; 
charset=ISO-8859-1....<?xml version="1.0" encoding="UTF-8"?>.<!DOCTYPE html.  PUBLIC "-
//W3C//DTD XHTML 1.0 Strict//EN".  "DTD/xhtml1-strict.dtd">.<html 
xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">.  <head>.    <title>Ethereal: 
Download</title>.    <style type="text/css" media="all">..@import url("mm/css/ethereal-3-
0.css");.    </style>.</head>.  <body>.    <div class="top">.    <table width="100%" 
cellspacing="0" cellpadding="0" border="0" summary="">.      <tr>.        <tdvalign="middle" 
width="1">..  <a href="/"><img class="logo" title="Ethereal home" src="mm/image/elogo-64-
trans.gif" alt="" width="64" height="64"></img></a>.</td>.       <td align="left" 
valign="middle">.          <h2>Ethereal</h2>.          <h5 style="white-space: 
nowrap;">Download</h5>.        </td>.         <td align="right">..    <table style="margin-
right: 10px;" cellspacing="0" cellpadding="0" border="0" summary="">.                



feature vectors parsed from the raw data in table 2 is shown 
in table 3.  

The novel feature vector concept provides several other 
advantages. First, the feature vectors allow for the automatic 
aggregation of data from multiple sources or tools. By 
having the analyst identify the feature vectors a priori for 
each data source or tool result, the analyst in essence is 
identifying a schema or semantic organization of the data 
such that it can be aggregated based on consistent features 
across data sources and tool results. Second, the semantic 
content provided by the feature vectors provides a more 
meaningful organization for analysis and storage in 
databases. Third, the feature vectors can potentially inspire 
additional analysis paradigms, given the large body of 
research on semantic analysis [3]. 

F. tHc Data-Structure 
The source code listing in table 4 is a reference 

implementation of the tHc data-store as a Perl Storable 
object. The anonymized excerpt shows the overall 
organization of instance metadata, forward and reverse 
indices, and node flows with corresponding time series 
attributes. These tHc structures are created in memory for 
rapid access by the DSO to support queries and generation of 
feature-vectors. The Perl Storable object methods provide 
functions to save the data-structure to disk, and to restore 
such files again as in-memory data-stores.  

G. Validation 
To validate the accuracy and completeness of tHc for 

flow data, we generated tHc data structures from 
representative flow files. Typical results of the conversion 
result in the following characteristics: 

• Raw data flow file size  2.1MB 
• Raw number nodes  1527 
• tHc storage object size  1.6MB 
• tHc number nodes  1527 

The information-to-noise ratio for a flow file is 
approximately 1:1 since each data element is potentially of 
interest to the IDS processing. The size difference 
exemplified by this flow file is due to different 
representations of data, time, and numbers in packed versus 
string representations. The two representations incorporate 
identical node counts indicating that no information has been 
lost in the conversion; the equivalent information has been 
structured in memory to optimize DSO query requests. 

To validate the feature-vector generation process for 
internet string traffic, the DSO must parse the raw traffic to 
preserve only the evidence dimensions requested. As a result, 
the volume of data of the feature-vectors will be less than the 
volume of the raw data. It is important that the feature-
vectors contain equivalent information to support the tool 
and detection processes. We show that while the volume of 
data is decreased, the resulting tool/alert generation is 

Table 3: Select dimensions and associated feature vectors from the raw HTTP data in table 2. These feature vectors 
represent the content usable by IDS tools and detectors; approximately a 50% reduction in data load is exhibited. 

Dimension Sample Values 

IP / PORT / 
TIME / 
PROTO 

0.911310 145.254.160.237:3372 65.208.228.223:80 HTTP 533 

URL GET /download.html HTTP/1.1 

Referer Referer:   
http://www.ethereal.com/development.html 

User-Agent User-Agent:  
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6) Gecko/20040113 

Host Host: 
www.ethereal.com  

 4.846969 65.208.228.223:80 145.254.160.237:3372 HTTP 478 

Content charset=ISO-8859-1....<?xml version="1.0" encoding="UTF-8"?>.<!DOCTYPE html.  
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN".  "DTD/xhtml1-strict.dtd">.<html 
xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">.  <head>.    
<title>Ethereal: Download</title>.    <style type="text/css" 
media="all">..@import url("mm/css/ethereal-3-0.css");.    </style>.</head>.  
<body>.    <div class="top">.    <table width="100%" cellspacing="0" 
cellpadding="0" border="0" summary="">.      <tr>.        <tdvalign="middle"  



statistically equivalent. In practice, the feature-vector set 
requires only 20% of the volume to produce a slight increase 
in alert count. This +0.3% discrepancy is due to differences 
in the alert generation algorithms; in the feature-vector case, 
multiple alerts can be generated from the appearance of 
multiple string literals in the same packet. 

• # of alerts generated using raw data  47746 
•  # of alerts generated using tHc  47889 
• Volume of alert data using raw data  43MB 
• Volume of alert data using tHc  8MB 

IV. FUTURE WORK 
One task for future work will be to explore the tradeoffs 

inherent in allowing the transmission of distributed data 
collection to a central server more fully. For instance, as 
sensor capabilities improve, more computation can be 

offloaded to the sensors. However, this has certain 
limitations such as the impact of a compromised sensor or 
network linkage. There is also the potential for having more 
than two-phases in the architecture, such as: collection and 
partial processing at the sensor, aggregation and final 
processing on a central server, and presentation on a mobile 
device. We must identify the complete performance 
requirements and capability distribution techniques for 
maximum performance given a specific network 
infrastructure and associated high bandwidth network. 
Allowing this distribution to be determined and adjusted 
dynamically is the ultimate goal. 

V. CONCLUSIONS 
We designed and implemented a novel IDS architecture. 

This resulted in the development of a distributed sensor 

Table 4: Sample Implementation of tHc as an associative memory array through a Perl Storable object generated from 
CISCO NetFlow (v5) traffic. 

SVAR1 = { 
   ‘tHc_version’ => 3, 
   ‘flows’ => { 
      ‘A.B.C.92’ => { 
         ‘A.B.C.221’ => { 
            ‘srcport’=> ’34,’, 
            ‘prot’ => ‘TCP(0x06),’, 
                    … 
      ‘A.B.C.71’ => { 
         ‘A.B.C.333’ => { 
            ‘srcport’=> ‘8,8,’, 
            ‘prot’ => ‘IPv6/TCP(0x06),IPv6/TCP(0x06),’, 
               ‘tcp_flags’ => ‘****APRS*,****APRS*,’, 
               ‘AdjMat_coords’ => { 
                  ‘y’ => 102, 
                  ‘x’ => 122 
                  }, 
               ‘svr_bytes’ => ‘5362,5362,’, 
               ‘clt_pkts’ => ’12,12,’, 
               ‘cli_bytes’ => ‘2704,2704,’, 
               ‘srcaddr’ => ‘A.B.C.71’, 
               ‘durations’ => ’00:01:25.6727854,00:01:26.968210,’,                           
               ‘dstaddr’ => ‘A.B.C.333’, 
 

Individual Flows 
and Times 

    ‘metadata’ => { 
       ‘nodecounts’ => 1521, 
       ‘storable’ => ‘20110712.11.xxx.storable’, 
       ‘lastTime’ => 1310471999, 
       ‘firstTime’ => 1310468402, 
       ‘srcfile’ => ‘20110712.11.xxx’, 
       ‘edgecount’ => 5108 
       }, 

Context Data for the 
Instance 

    ‘indices’ => { 
       ‘indx2ip’ => { 
          ‘1049’ => ‘A.B.C.90’, 
          ‘127’ => ‘A.B.C.220’, 
          ‘71’ => ‘A.B.C.143’, 
          ‘1481’ => ‘A.B.C.61’, 
          ‘882’ => ‘A.B.C.37’, 

INDX to IP 
And 

IP to INDX 



object that incorporates features in the sensor data collection 
process that optimizes the overall IDS process. This 
developed sensor object satisfies the following objectives: 

• Collect all data, dependent of course on the storage 
capacity of the sensor 

• Parse raw network traffic to extract only the specified 
evidence dimensions 

• Generate lossless feature-vectors sufficiently 
representing the original raw network data to drive the 
IDS detection algorithms 

• Create a query-optimized local data store for the raw 
data 

• Support a query responder to select and return precise 
feature-vectors on request 

• Support a feature-vector stream to feed traffic to new 
and legacy IDS tools, removing non-interesting 
evidence, e.g., noise 

• Support an extensible data-set generator, as would be 
needed to generate a network graph for data 
visualization at the client 

• Support an object-oriented interface API, 
implementable in any modern language environment, 
including Perl, Python, C++, Java, etc. 

In addition, we provided examples taken directly from 
the reference implementation. This reference implementation 
was used to provide validation, showing that the proposed 
sensor design not only reduces the amount of data needing to 
be transmitted to the central server but also maintains a 
statistically similar number of generated alerts. A secondary 
effect resulted in that the volume of the generated alert 
output also occupies significantly less data space.  
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