
SÁDI – Statistical Analysis for Data type Identification

Sarah J. Moody and Robert F. Erbacher
Department of Computer Science, UMC 4205

Utah State University
Logan, UT 84322

s.j.m@aggiemail.usu.edu and Robert.Erbacher@usu.edu

Abstract
A key task in digital forensic analysis is the location of relevant information within the

computer system. Identification of the relevancy of data is often dependent upon the
identification of the type of data being examined. Typical file type identification is based upon
file extension or magic keys. These typical techniques fail in many typical forensic analysis
scenarios such as needing to deal with embedded data, such as with Microsoft Word files, or
file fragments.

The SÁDI (Statistical Analysis Data Identification) technique applies statistical analysis of
the byte values of the data in such a way that the accuracy of the technique does not rely on the
potentially misleading metadata information but rather the values of the data itself. The
development of SÁDI provides the capability to identify what digitally stored data actually
represents and will also allow for the selective extraction of portions of the data for additional
investigation; i.e., in the case of embedded data. Thus, our research provides a more effective
type identification technique that does not fail on file fragments, embedded data types, or with
obfuscated data.

1. Introduction and motivation for the work

In computer forensics, the goal is to locate criminally relevant information on a computer
system. Today’s operating systems allow such relevant information to be stored in many places
within a computer system. The most common place to locate such information is on the hard
drive. Given the size of today’s hard drives, locating small snippets of criminally relevant data
can be extremely cumbersome, especially when sophisticated data hiding paradigms are used. A
digital forensic analyst must be able to locate the evidence, or lack thereof, that might be found
on any number of various types of digital storage devices. Rather than simply having to locate
files containing criminal activity hidden within the morass of files, analysts must locate the
information hidden within otherwise innocuous files. While many techniques can be used to
hide information on the hard drive, we are focusing on the location and identification of
relevant information embedded or appended into other innocuous appearing files; there are
many techniques that can be applied for the hiding of data [17][20].

This need to locate evidence highlights the need to be able to “identify the type of
information stored in a device and the format in which it is stored” [14] so that the forensic
analyst can retrieve the relevant portions of the data and utilize that information in the
investigation. This research presents a new and unique technique for identifying the type of data
on a digital device and its storage format based upon the values of the stored data bytes and a
statistical analysis of those values. While we will be focusing on the identification of data on
hard drives, the discussed technique is applicable across the board to all forms of digitally
stored data. This new technique is being referred to as SÁDI (Statistical Analysis Data

Identification). Of critical importance is the concept that SÁDI attempts to identify data types
as opposed to file types. This becomes critical when considering hybrid data types such as
Microsoft Word, which can incorporate text, images, html, spreadsheets, etc.

File type – The overall type of a file. This is often indicated by the application used to create
or access the file.

Data type – Indicative of the type of data embedded in a file. Thus, a single file type will
often incorporate multiple data types.

Thus, when attempting to locate relevant files the goal becomes the location of relevant data
types. For instance, when attempting to locate child pornography on a hard drive we must
consider locating

• Image files as separate whole units
• Fragments of image files, i.e., deleted files
• Images or image fragments appended to files
• Images or image fragments embedded into hybrid files such as Microsoft Word
• Images camouflaged on the hard drive

These scenarios limit the effectiveness of relying on file header information or file
extensions that are the primary focus of most detection techniques.

The technique used by SÁDI involves taking a block of memory, i.e., a single file, and
performing a statistical analysis on it. The file’s blocks are processed using a sliding window
paradigm [4], and various statistics are calculated for each window and the memory block as a
whole. These statistical results are analyzed to identify their relationship to the unique
characteristics representative of individual data types. The technique does not rely on the
potentially misleading metadata information but rather the values of the data itself.

2. Research problem

There have been many techniques developed which attempt to identify file types; these
techniques will be expounded upon in Section 3. However, currently available techniques do
not have acceptable accuracy in the detection of file types except when relying upon file header
information, file extensions, fixed “magic numbers” and other such information associated with
the file. The most common method is to use the file extension to identify file type; this method
however is extremely unreliable as in most cases the extension is changeable by any user or
application. Many operating systems will not open a file that has been renamed with an
incorrect extension and some virus scanners will not scan files unless they have the executable
extension [13].

UNIX systems utilize the file command to identify file types. This command utilizes three
different methods to attempt to identify the parameters passed to it. The first method uses
system information to recognize system files, the second utilizes magic numbers found in the
first 16 bits of a file, and the third method utilizes any ASCII content within the file to attempt
to categorize the ASCII data according to language (such as C or a troff input file) [2][13]. For
the magic number test to accurately identify the file, the ‘magic number’ found in the first 16
bits of the file must be found in the /etc/magic file and be associated with the correct file type as
described in [2]. The reliance on header information prevents magic numbers and file
extensions from being useful when dealing with file fragments or obfuscated files and data.
Other work on file header analysis, such as that by Li et al. [12], apply Enhanced String Kernels
(ESK) and Extended Suffix Arrays (ESA) to identify header fragments based upon the header
content.

Another tool that can be found for identifying files is a Freeware product called TrID ([19]).
TrID utilizes the binary structure of files to identify them based upon recurring patterns found

within files of the same type. This tool however was not designed as a forensic tool and
therefore does not take into account situations involving covert channels or other such
manipulated data that someone actually wants to hide from file type identifying tools. It also
has no available documentation on the accuracy or false positive/negative rate. Therefore,
although TrID can be useful for many computer users, it cannot be considered a forensic tool
nor does it appear to provide more capabilities concerning file identification than already
provided in current forensic tools previously listed.

File header information and other embedded magic numbers can be manipulated to prevent
the file from being identifiable by techniques that use this information [8]. In addition, the
magic number file itself (/etc/magic) can be modified by a user to misrepresent files. This
manipulation prevents all current techniques from accurately being able to identify file type.
Such manipulations are typical of viruses attempting to cloak themselves. Hence, all of the
above-mentioned methods of identification are easily circumvented.

Another problem with focusing on identifying file type rather than data type is the issue of
embedded data. It is very easy for a criminal to hide a table, of child porn sales, for example,
within a very large word document so that it is not discovered. Current forensics tools lack the
ability to find and locate embedded data; thus causing resources to be spent trying to locate
information which might or might not be somewhere on a hard drive [1][3][5][6][16].

3. Background and related work

This research extends the work of Erbacher et al. [4]. In this previous work, the technique
and an analysis of the potential of the technique were presented. This research examines the
actual implementation of the technique as well as measurements of its effectiveness and
accuracy.

Other previous work in the area of type identification is found in [13]. In this work, three
different techniques were used to identify file types. Note however that although these detection
algorithms attempt to utilize file content to perform the identification, the overarching goal of
these techniques was to identify the file type regardless of what data or data types might be
contained or embedded therein. Consequently, the techniques by McDaniel et al. [13] would not
be able to identify embedded data accurately. McDaniel et al.’s first technique used a file
fingerprint created from the byte frequency distributions of files of the same type. Files were
then identified depending upon their match with a type’s fingerprint. This algorithm had an
average accuracy rate of 27.5%. The second algorithm reported by McDaniel et al. is the Byte
Frequency Cross-correlation Algorithm (BCA). This algorithm is similar except it extends the
process to look at correlations between byte values. The authors reported its accuracy as
45.83% and that it was a much slower method than the BFA method. The third algorithm was
the File Header/Trailer Algorithm (FHT). This algorithm just looks for patterns and correlations
in a certain number of bytes at the beginning and ending of a file. Although this method
achieved an accuracy of 95.83%, it reduces the problem to a non-content based approach that
only relies upon headers and trailers; i.e. it will fail for many situations of interest to forensic
analysts.

Karresand et al. [10] present an algorithm that utilizes the measure of the rate of change of
the byte contents of a file and extends the byte frequency distribution based Oscar method
mentioned in an earlier paper of their research [11]. A centroid, created from byte frequency
distributions, byte averages, and the standard deviation for byte values, was used to identify file
fragments. To match a type, the file fragment had to be ‘closest’ to the type’s centroid. In [10]
this Oscar method is then extended to incorporate the ordering of the byte values in a fragment
using the rate of change between consecutive byte values. This method achieved 92.1%

detection rate with a 20.6% false positive rate for JPEG files. Zip files achieved a detection rate
of 46% to 80% with a false positive rate of 11% to 37% while exe files generally only achieved
a detection rate of 12.6% and a false positive rate of about 1.9%. For both zip files and exe files,
as the detection rate increased so did the false positive rate. While the technique was effective
at identifying jpeg files, this is misleading as the authors incorporated analysis steps into their
algorithm designed to specifically detect JPEG files; i.e., they look for byte patterns required to
appear in JPEG files. This is the reason for the high false positive rate with JPEG files and
raises issues as to the overall usefulness of the technique. These Oscar-based methods still
focused on identifying file type and hence will have the same drawbacks as are mentioned for
the methods developed by McDaniel et al.

Hall et al. [7] present an entropy-based method for performing broad file type classification.
The technique uses an entropy measurement and a compressibility measurement through the
application of a sliding window technique. The technique fails to identify file types accurately
but will aid in differentiating the type of data contained within the file, such as compressed
versus uncompressed data.

4. Research project goals, approach and uniqueness

Given the weaknesses of the existing capabilities for the identification of file types, we set
out to develop a new methodology for file type identification that built on and improved upon
previous work. Our goal with the development of the new methodology was to:

• Allow for the more accurate identification of file and data types
• Allow for the identification of obfuscated data and covert channels
• Allow for the locating and extraction of hidden data

As implied by the name ‘Statistical Analysis Data Identification’, the SÁDI method uses
results from a statistical analysis to perform data type identification. While a full range of
statistical techniques were examined, the following were identified as the most relevant for the
data type differentiation: average, kurtosis, distribution of averages, standard deviation,
distribution of standard deviations, and byte distribution.

The graph of averages will show how the range of values in each window changes across the
file. The Kurtosis is used to show peakedness in a dataset and hence identifies the flatness or
consistency of the data directly. The kurtosis is essentially another measure of consistency of
the data. The standard deviation essentially identifies how chaotic values within a window are
and how tightly fit the elements are to the median; i.e. are there many outliers in the window or
are the values mostly consistent? The distribution of averages and the distribution of standard
deviations are both alternative ways of viewing the average and the standard deviation. The
byte distribution allows us to differentiate between very similar data types such in the case of
html, txt, and csv data. All of these data type are strictly textual data but each haa unique
characteristics in their distributions that allows for differentiation between them through the
distribution of byte values.

The most novel addition the SÁDI technique makes is the addition of the other statistics to
the analysis process and the utilization of a sliding windows technique to allow the
identification of fragments of data. These novel methods were chosen primarily to obtain
greater accuracy in the identification process and to reach the goal of data type identification
rather than file type identification.

5. Methodology

5.1. Applied statistical techniques

From the previous work by Erbacher et al. [4], the most useful statistics for data type
identification (regarding currently studied data types) include average, distribution of averages,
standard deviation, distribution of the standard deviations, and kurtosis; to which we added the
distribution of byte values. More specifically:

Average –the average is taken by averaging the byte values for each window i and averaging
the set of window averages. N denotes the number of bytes in the window. The graph of
averages will show how the range of values in each window changes across the file.

∑
=

=
N

i
ij X

N
X

1

~ 1

Distribution of Averages – the probability that an average chosen from all the averages of a
memory block is of value B in the range of 0-255. The goal with mapping the distribution of the
statistics, i.e. measuring the probability of a statistical value occurring, is to provide a summary
of the type of data in a file, providing an overview of the components of a file.

())1Pr(
~

~ BXBD j
X B

≥>+=

Standard Deviation –the standard deviation of the byte values of a window from the
average for the window. This essentially identifies how chaotic elements values within a
window are and how tightly knit the elements are to the median; i.e. are there many outliers in
the window or are the values mostly consistent?

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −=

N

i
jij XX

N
S

1

2~1

Distribution of Standard Deviations – the probability that a standard deviation chosen
from all the standard deviations of a file is the value B.

())1Pr(BSBD j
S B

≥>+=

Kurtosis – the ‘peakedness’ or consistency of the data calculated from two different
modifications of the standard deviation, the numerator is the standard deviation squared with a
fourth power instead of a square power and the denominator is the standard deviation squared.

2

1

2~

1

4~

*

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=

∑

∑

=

=

N

i
ji

N

i
ji

j

XX

XX
NK

Distribution of Byte Values – the probability that a byte chosen from all the bytes in a
window is the value of B, only unique values are used in the analysis.

())1Pr(BXBD iX i
≥>+=

These statistical characteristics are then utilized in the algorithmic analysis of the digital data
to uniquely identify data of each data type. In various cases, the other statistics mentioned in [4]
can be used to increase accuracy and differentiate between very similar data types.

5.2. Identifying unique data type characteristics

As a starting point, only base data types were studied and applied to whole files in order to
verify the accuracy and effectiveness of the statistical techniques and identified range
characteristics associated with each data type. Base data types are those for which the entire file
can be considered to be of the same data type (ignoring header information), some examples
include jpg, exe, dll, and txt. The range characteristics amount to identifying the expected
window values for each statistical technique. Unique range values for a sufficient number of
statistics were used for each data type to ensure differential diagnosis. Creation of these range
values was done through two phases. First, the statistical graphs for a large number of files with
a similar type were compared. The goal here was to examine the graphs to identify unique and
consistent patterns that may aid differential diagnosis. Second, the actual numerical values of
the statistical techniques were examined to identify the exact values that gave rise to the unique
characteristics identified in the graphs. These statistical differentiators are then stored in a
configuration file in association with each of the individual data types. The identified range
characteristics are shown in Table 1.

Due to the shifts in the statistical results for the different window sizes, this textual input file
is only applicable for the window size used to generate the characteristic data found therein.
Hence for varying window sizes multiple characteristic input files are required.

The advantage of allowing for different window sizes comes from the fact that each window
size will produce slightly varied statistical results for the data types and hence may highlight
differing unique characteristics that may not be as clearly visible at alternate window sizes. We
have primarily used a window size of 256 bytes. This size was chosen due to the benefit of the
data not being obfuscated from too large a window and it is large enough to provide a good
amount of data in each window to produce unique characteristic statistical information.

Table 1: Configuration values for the
differentiation of typical data types. These
configuration values are valid for a 256 byte
window.
Type Average Kurtosis Std. Dev.
 Min. Max. Min. Max. Min. Max.

NULL 0 0 0 0 0 0
Txt 58.156 97.640 1.013 5.065 26.482 38.07

Html 40.40 97.70 1.40 4.10 22.00 38.40
Csv 44.0 100.0 1.40 23.40 4.50 38.07
Jpg 103.0 148.40 1.48 3.30 56.70 88.80
Dll 0.0 178.0 0.0 20.80 20.0 106.70
Xls 2.0 87.690 1.265 51.993 5.025 93.735
Exe 1.510 165.86 0.0 58.620 0.0 118.58

Bmp 0.0 255.0 0.0 109.0 0.0 120.0

Several data types cannot be differentiated due to their extremely similar binary structure.
Data types currently being analyzed that cannot be differentiated include:

• Exe and dll files – These file formats are both binary with similar statistical values and
compiled code content.

• Csv, html, txt – Since these are all text oriented file formats they have similar narrow
ranges of values. The goal for differentiation will be identifying unique probability
characteristics; namely a high appearance of “,” in csv and {“<”,”>”} in html.

Figure 1: Averages values for xls data. These
data streams are particularly unique with the
stair-step pattern. Also of note are the peaks
at the beginning and end of the data streams.
Finally, an embedded graph is visible at the
38% mark for one of the data streams.

Some of the data types also have unique identifying patterns for some statistics. This is seen,
for instance, with Microsoft Excel spreadsheet files in conjunction with byte averages. This
particular data type and statistic has a stair step pattern that is unique to only the average
statistical results for spreadsheet data [4]; this is exemplified in Figure 1.

 This unusual pattern in the xls average statistical data engendered a need for a second pass
within the analysis code. The first pass focuses solely on applying statistical analysis techniques

 0

 10

 20

 30

 40

 50

 60

ppt header

doc header

textual-formatting

textual-letters

jpg header

jpg zip-archive-table

zip-compressed

xls header

xls-spreadsheet

xls-empty-spreadsheet

xls trailer

exe header

exe install-exe

W
in

do
w

 N
um

be
r

Figure 2: Secondary Analysis of ‘Food_Storage.xls’. The characteristic pattern
typical of xls spreadsheets can be clearly seen. This pattern remains identifiable
even with larger numbers of conflicting matches in the first pass.

and attempts to identify data blocks that match the statistical structure of known data types. The
second pass performs an analysis that attempts to identify unusual patterns in these computed
statistics, as seen with Microsoft Excel spreadsheet files; this is exemplified in Figure 2. By
looking at this figure, one can also see the whole structure of the xls file; the beginning
windows match an xls file header followed by windows that match spreadsheet data.

These are then followed by windows matching empty spreadsheets and finally the last few
windows match an xls trailer, clearly showing the data components found within an xls file.

Output is provided to the user designating the most likely data types for each file. Any
embedded or appended data should be able to be identified on a per window basis, similar to
that shown for the component data types in the xls file shown in Figure 2.

Identify unique characteristic
ranges and patterns for each

data type

Compare the window's
statistical results with the

characteristic ranges for each
data type, identifying

windows that match that
criterion

Calculate % match for each
data type for the memory

block as a whole
Graph the results

Do the initial results clearly
identify the data type of the

memory block?

Detection of data type
characteristic patterns within

windows' statistical data

Calculate % match for each
data type, for each window in

the memory block

Graph the individual
window results

Calculate the statistics for
each window in the memory

block

N
o

Given a set of training data

Given a window of test data

Prelim
inary Statistical

 A
nalysis

Initial A
nalysis

Secondary A
nalysis

FinishedYes

Fe
ed

ba
ck

 L
oo

p

Figure 3: Analysis Process. This task flow
diagram exemplifies the process of computing
the initial statistical matching parameters and
applying those parameters to test data for data
type identification.

6. SÁDI implementation
SÁDI’s task flow [15], exemplified in Figure 3, is fundamentally based on a continuous

feedback loop paradigm to allow for the continuous improvement and refinement of the data

differentiation parameters. Such improvement is critical given the continuous deployment of
new or modified file formats; i.e., the Microsoft Word format changes with every new release
of Microsoft Word. This ever-changing nature of file formats adds to the difficulty of
differentiating file formats as files that are the same essential type can have slight variations.

6.1. Data preprocessing

Through the data preprocessor, we generate the statistical result files. These statistical result
files are plain text and contain the statistics for each window from the original file. At the
beginning of each of these statistical result files are three lines of text containing: the name of
the original file (including any file extension), the size of window used, and other formatting
information. Following these three lines, the remainder of the file is organized as a very large
table of values. Each column contains the values for a single statistic and in the cases of the
distribution statistics, an array of values. Each row corresponds with the values for a single
window from the original file. The statistical result files generated by the preprocessor are then
used as input into the analysis code. These are also the results used to initially construct the list
of data type characteristics used in the identification process.

6.2. Analysis code

The analysis code is organized such that each file’s window data is looped over multiple
times (once for each statistic for each data type); hence, the innermost loop is over the window
data. The Big O complexity is O(f*d*s*m) where f is the number of files to be analyzed, d is
the number of potential data types involved in the analysis, s is the number of statistics for each
data type, and m is the length of the file. Accuracy enhancing features of the environment
include:

• Flexibility in setting weights for the values of the data type statistics
• Inclusion of a percent match total for the block as a whole (facilitates file identification)

rather than only on a per window basis
• Addition of timing code for performance evaluations
• Extension to using a two pass analysis, with the second pass performing pattern

matching.
The benefit of a flexible weighting scheme for the data types’ statistics is in the ability to

weight more unique statistics higher and hence they will have more effect on the resulting
identification process than less unique statistics.

The second pass analysis, i.e., pattern matching, was only performed on those memory
blocks that could not be identified with the faster initial analysis pass. This improved overall
performance without sacrificing the accuracy of the entire analysis process. Currently, this
pattern matching is primarily focused on detecting xls files.

7. Evaluation

To evaluate the accuracy of SÁDI, we gathered 25 files of each data type being analyzed:
bmp, csv, dll, exe, html, jpg, txt, and xls; a total of 8 different data types and 200 files. The first
five files of each data type were used to identify the unique characteristics of each data type
initially and specify the statistical parameters used for the testing portion of the evaluation.
During testing, adjustments were made to avoid high false positive rates, high false negative
rates, and to increase accuracy.

Table 2: Analysis Results – only including
data generated from the initial analysis.
Data windows were required to have a
minimum 92% match with a data type to be
associated with that data type.

of

 fi
le

s

B
m

p

D
ll

an
d

ex
e

T
ex

tu
al

jp
g

xl
s

%
 C

or
re

ct

Bmp 25 16 9 0 0 0 64%
Csv 25 0 0 25 0 0 100%
Dll 25 6 19 0 0 0 76%

Exe 25 6 19 0 0 0 76%
Html 25 0 0 25 0 0 100%

Jpg 25 1 7 0 17 0 68%
NULL 0 0 0 0 0 0 100%

Text 25 3 2 20 0 0 80%
Xls 25 22 1 1 0 1 4%

Totals 200 54 37 71 17 1 74.2%

The files were then run through the preprocessor to generate the statistical result files that
were then used in the automated analysis to identify the data type(s) contained in each. The
results from the initial analysis pass, without pattern matching, are shown in Table 2; all
requiring a minimum percentage match of 92% before a type could be considered a match.
These results have combined csv, html and txt data into one type as well as dll and exe data into
one type. By adjusting this minimum percentage, we can vary the resulting percentage of
correct matches that in turn alters the false positive and false negative rates. The ideal minimum
percentage varies depending upon type. It can also be of note that although xls is included here
a secondary pass has not yet been done and therefore much of this data will be incorrectly
identified.

The results for xls data when a secondary pass is taken into account are presented in Table 3.
The most influential reason for the terrible results for xls data when only considering the initial
pass was that many Excel files by default include two sheets of blank data that most users
simply leave blank and do not delete. These blank spreadsheets are stored primarily as NULL
data, thus causing most xls files to have a relatively high match for null data. Even without the
secondary pass, the results for xls data improve when the NULL data type is combined with the
xls data type, producing a 64% accuracy compared with the 4% accuracy achieved when
considering the two data types separately.

Table 3: Secondary analysis results for xls
data. The incorporation of the pattern-
based analysis greatly improves the results
over the single pass only analysis.

of

 fi
le

s

bm
p

D
ll

an
d

ex
e

T
ex

tu
al

X
ls

%
 C

or
re

ct

Fa
ls

e
+

%

Xls 25 2 3 1 19 76% 0

The results of the analysis of the 25-bmp files are shown in Table 4. When considering the
dissimilarity of bmp and textual data, it was very odd to see so many files identified as textual
data.

Table 4: Secondary analysis results for
bmp data. The identification of matches
with textual data was key to improving the
accuracy of bmp matches.

of

 fi
le

s

bm
p

D
ll

an
d

ex
e

T
ex

tu
al

X
ls

%
 C

or
re

ct

Fa
ls

e
+

%

Bmp 25 11 7 7 0 44% 0

Upon an inspection of the original files being matched to the textual type, it was discovered
that the files were of the form shown in Figure 4. Hence, the identification of the fact that the
files were not actually bmp files but text files and the analysis correctly identified them as such.
These appear to be source code files with embedded bitmap data, for instance, to act as icons.
Those files were then replaced with actual bmp files for use in the results shown in Table 1.

#define info_width 8

#define info_height 21

static unsigned char info_bits[] = {

 0x3c, 0x2a, 0x16, 0x2a, 0x14, 0x00, 0x00,

0x3f, 0x15, 0x2e, 0x14, 0x2c,

 0x14, 0x2c, 0x14, 0x2c, 0x14, 0x2c, 0xd7,

0xab, 0x55};
Figure 4: Content of 'info.bmp'. This is bitmap
data in a textual form, essentially embedded
into a source code file. This data likely acts as
an icon.

Also of note is the combination of dll and exe types. Because both are compiled code and
contain binary data these types can not usually be differentiated and commonly have the exact
same characteristic ranges. If the attempt is made to consider them separate types, both tend to
match dll because that is the slightly more unique type and most exe data does fall within the
bounds of the dll data type. Future research will consider if the byte distribution will have any
effect upon the differentiation between these two similar types.

In the consideration of jpg data, although most jpg files are correctly matched, there were
several which matched the wider range found within the dll and exe data types. This percentage
can be expected to fall as more files are tested. However, given the binary and compressed
nature of jpg data there will always be a subset of files that will fall just outside of the jpg data
characteristic range and hence will fail to match jpg data as accurately as other types of binary
data, such as the dll and exe data types.

Table 5 gives the results with a varying minimum percentage; by varying the minimum
percentage required for a match, we obtain the most promising accuracy for each data type. The
minimum percentage is the minimum percentage required to have the corresponding type be
considered a match. The data being analyzed is identified as being of the most unique type that

still meets this minimum percentage requirement. For example, some files containing data
match the bmp type 100% but also match the text data 94.5% and dll/exe 97%. If the minimum
required percentage were 95%, then the data would be categorized as dll data since that is the
most unique type that still meets the minimum percentage match requirement. If the minimum
percentage required for a match is instead 92%, the text type is more unique and meets this
requirement so the data would be identified as text. The xls data type has been left out as the
most accurate results for that data type comes from the secondary analysis.

Table 5: Varied minimum percentages. This
table identifies the changes (improvements) in
accuracy achieved by letting the minimum
percentages float to optimal values
independently for each data type.

fil

es

M
in

. %

B
m

p

D
ll

an
d

E
xe

T
ex

tu
al

Jp
g

N
ul

l

X
ls

%
 c

or
re

ct

Bmp 25 95 16 9 0 0 0 0 64%
Text 75 92 3 2 70 0 0 0 93%

Dll
and
Exe

50 92 12 38 0 0 0 0 76%

Jpg 25 88 1 6 0 18 0 0 72%

To differentiate between the three kinds of textual data, the distribution of byte values is
used. Although not yet fully incorporated into the automated analysis, some preliminary results
have been obtained to verify this differentiation will be possible for most files. Each data type
has a byte distribution of average values. A script compares each byte distribution value from a
window with the expected average byte characteristic value(s) for the given types. The number
of matching values is calculated for the window’s distribution, producing a window match
percentage. The file’s match percentage is calculated by summing all of the windows’ match
percentages and then dividing by the total number of windows. If this match percentage is
greater than 80% the file is counted as a match for the corresponding data type. The number of
matched files is then divided by the total number of files analyzed, producing a percentage
representing the number of correctly matched files. These percentages are presented in Table 6.
Each row represents the files’ data of the corresponding type while the values in each column
represent the percentage of files matched for that column’s type. For example, csv files have
96.0% of the files matching csv data while 0.0% of the files matched html data and 4.0% of
windows matched plain text data. Therefore, for csv files, more match the csv data type than
any other data type.

Although the accuracy of the html data is reasonably high (84.0%) it could be higher for
many files. Out of the 25 html files analyzed, four matched textual data better than html. When
examining the original files, one reason for this is the presence of JavaScript code within the
html file. The other html files contained much less of this embedded code or none at all and
were accurately identified as html data. This is another example of the benefit of the technique
to identify embedded data since the presence of larger amounts of non-html data caused these
four files to match plain text data rather than html.

Table 6: Percentage of matched files from
textual distribution analysis. Here we
applied distribution analysis in order to
differentiate csv, html, and txt files. This
relies on the presence of unique frequently
occurring bytes in each of the types, such
as comma in csv files.

 Csv Html Txt

Csv 96.0% 0.0% 4.0%
Html 0.0% 84.0% 28.0%

Txt 4.0% 0.0% 80.0%

8. Conclusion
The results presented here are highly promising. The technique has been shown to accurately

differentiate data types. This is highlighted in the results from the initial analysis of bmp files of
which seven textual files were unknowingly included and were then identified as textual data
rather than bmp data. In general, accuracy rates are far better than prior techniques and do not
rely on header information, file extensions, or any other form of meta data.

With regard to false positives, SÁDI compares well with previous techniques. False positive
percentages range from 13.6% for dll and exe data, through 10.67% for bmp data, down to 0%
for jpg and xls data. One reason for the higher false negative percentages is that for some files
they match a more unique type or a slightly less unique type. For example, most dll and exe
data that was incorrectly identified was instead identified as bmp data that has wider ranges and
hence allows for data with more varying values. Also, most incorrectly identified bmp data
alternatively is identified as dll and exe data because it happens to fall within the smaller ranges
of the characteristics of the dll and exe data types.

Even in cases where covert channels are used to obfuscate data [9], SÁDI can be an effective
analysis tool. One such covert channel method is to utilize file slack space or ‘extra’ space in
file headers to hide data [9]; this embedded or appended data would be identified using the
SÁDI technique simply because of its existence and its differing statistical structure from the
rest of the file.

Bmp data presents its own challenge because technically any binary value is a valid value;
therefore, depending upon the colors present within the bmp picture the file can fall into a much
narrower category. An extreme example of this could be a bmp that is simply a black
background. This would be stored as all zeros and hence would be identified as NULL data.
This is such an extreme example because NULL is at the opposite end of the spectrum of data
types because of the single value range for all statistics compared with bmp that has the
broadest range for all statistics.

9. Future work
There could be benefit from further studying the effect of varying window sizes, both in

identifying an optimal window size and in identifying applications outside of forensics. For
instance, SÁDI could have beneficial use in virus scanners and in the identification of copyright
or privacy violations. Similarly, simply identifying covert channels or the unusual
dissemination can aid identification of violations of trade secrets or other malicious uses of
covert channels.

Currently, we are looking to extend SÁDI to support more base types as well as the more
difficult container type files, such as Microsoft Word, identifying the data types embedded
therein. This will make SÁDI far more generally applicable to the detection of hidden data and
allow SÁDI to locate information even when no file system is available at all. This will require
applying SÁDI to fragments of data rather than to entire files and identify dynamically when
the data type appears to be substantially changing.

When dealing with embedded data or data that has been appended, the technique also needs
to identify the location of the data. To identify specific starting and ending locations of these
kinds of data further analysis would be needed to break down the windows into byte values.

10. References
[1] Bryan Carrier, The Sleuth Kit, accessed on 2007-11-30, http://www.sleuthkit.org/sleuthkit/desc.php
[2] Darwin, file(1), Online Linux man page for the file command available at: http://linux.die.net/man/1/file,

accessed on 2007-11-30.
[3] Encase® Enterprise, online information found at: http://www.guidancesoftware.com/products/ee_index.aspx,

accessed 2007-11-30.
[4] Robert F. Erbacher and John Mulholland, "Identification and Localization of Data Types within Large-Scale

File Systems," Proceedings of the 2nd International Workshop on Systematic Approaches to Digital Forensic
Engineering, Seattle, WA, April 2007, pp. 55-70. Best Paper Award.

[5] Dan Farmer and Wietse Venema, The Coroners Toolkit (TCT), http://www.porcupine.org/forensics/tct.html,
accessed on 2007-11-30.

[6] FTK® AccessData, online information found at:
http://www.accessdata.com/common/pagedetail.aspx?PageCode=ftk2test, accessed 2007-11-30.

[7] Gregory A. Hall and Wilbon P. Davis, “Sliding Window Measurement for File Type Identification,”
http://www.mantech.com/cfia2/SlidingWindowMeasurementforFileTypeIndentification.pdf.

[8] Douglas J. Hickok, Daine R. Lesniak, and Michael C. Rowe, “File Type Detection Technology,” in Proceedings
from the 38th Midwest Instruction and Computing Symposium, Apr. 2005, http://www.micsymposium.org/.

[9] Neil F. Johnson and Sushil Jajodia, “Steganalysis: The Investigation of Hidden Information,” IEEE Information
Technology Conference, Syracuse, New York, 1998, pp. 113-116.

[10] M. Karresand, and N. Shahmehri, “File Type Identification of Data Fragments by Their Binary Structure,”
Proceedings of the IEEE Information Assurance Workshop, West Point, NY, June 2006, pp. 140-147.

[11] M. Karresand and N. Shahmehri, “Oscar – file type identification of binary data in disk clusters and ram pages,”
Proceedings of IFIP International Information Security Conference: Security and Privacy in Dynamic
Environments (SEC2006), LNCS, 2006, pp. 413-424.

[12] Binglong Li, Qingxian Wang, and Junyong Luo, “Forensic Analysis of Document fragment based on SVM,”
Proceedings of the 2006 International Conference on Intelligent Information Hiding and Multimedia, Pasaena,
CA, December 2006, pp. 236-239.

[13] Mason McDaniel and M. Hossain Heydari, “Content Based File Type Detection Algorithms,” Proceedings of
the IEEE 36th Hawaii International Conference on System Sciences (HICSS ’03), Washington, DC, 2003, pp.
332.1.

[14] Rodney McKemmish, “What is Forensic Computing?,” Trends and Issues in Crime and Criminal Justice, June
1999, published by the Australian Institute of Criminology. www.aic.gov.au/

[15] Sarah Moody and Robert F. Erbacher, “Automated Identification of Data Types for Use in Computer
Forensics,” Poster presented at the 2007 Grace Hopper Conference, Oct. 17 Poster Session.

[16] ProDiscover® for Windows, online information found at:
http://www.techpathways.com/prodiscoverWindows.htm, accessed 2007-11-30.

[17] G.J. Simmons, “The Prisoner's Problem and the Subliminal Channel,” In Proceedings of CRYPTO '83, 1984, pp.
51-67.

[18] Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li, “Fileprint Analysis for Malware Detection,” Proceedings of
WORMS 2005, Fairfax, VA, November 2005.

[19] TrID, published by Marco Pontello, http://www.brothersoft.com/trid-20596.html, accessed on 2007-10-30.
[20] http://berghel.net/publications/data_hiding/data_hiding.php

