
Hardware Accelerated Graphics in Java
David McDonald and Robert F. Erbacher

Computer Science Dept., Utah State University, Logan, UT
david.mcdonald@ihc.com and Robert.Erbacher@usu.edu

Abstract
This paper examines the feasibility of Java as a
development platform for high performance 3D
graphics applications. With the ubiquity of java and its
ease of development it must be considered as a
potential development platform. However,
traditionally java has been considered too slow for real
3D graphics. With recent advances in Java
performance, the implementation of the OpenGL
architecture within java (JOGL), and the direct
linkages from the java virtual machine to the
underlying graphics drivers the performance of Java
must be fully evaluated in terms of its graphical
performance capability. In this paper we examine both
the JOGL API as well as the Java3D API.

Keywords: Performance Evaluation, 3D Graphics,
Java

1. Introduction
The popularity of the Java programming language has
exploded in the last five years. Java has found its way
into a wide variety of markets, and developers world
wide continue to find new application areas that are
ideal for the language. Although much of the focus
has been on building custom enterprise business
software, there is a growing community that is
interested in using Java to build sophisticated 3D
applications. Such applications could be very useful in
a wide variety of industries, particularly those that
may have a need to distribute a 3D application over a
wide area network or even the internet using applet
technology. For organizations building 3D desktop
applications that are targeted for multiple platforms,
the cross-platform nature of Java could very well be
the cost saving solution they have been searching for.
 The question at this point is whether applications
written in Java can really perform at the level required
for realistic modeling of complex 3D environments. In
an attempt to achieve this required level of
performance, several Java APIs have been developed
which use native libraries to allow for hardware
acceleration of graphics.
 This report focuses on two of the more popular
APIs available for building 3D applications in Java:

Java3D, and Java bindings for OpenGL (more
commonly referred to as JOGL). Java3D and JOGL
both provide the ability to write 3D applications that
are hardware accelerated. Both APIs provide Java
classes that are packaged into JAR files, along with
native libraries that are used for hardware
acceleration. Java3D is available with two different
sets of native libraries: one for use with OpenGL
drivers, and another for use with DirectX drivers.
 The goal of this report is to understand how well
these APIs really perform, and whether it is realistic to
expect that a complex graphical application can be
written in an interpreted language. While the programs
written as part of this study are relatively simple, they
demonstrate features that are commonly used in most
3D applications and are a good basis for performance
testing.

2. The JOGL API
JOGL is a relatively new initiative from Sun
Microsystems and SGI that has emerged within just
the last couple of years [1]. JOGL is basically a
straight port of OpenGL. All of the standard functions
are available from both the GL and GLU libraries.
This allows programmers who are familiar with
OpenGL to quickly become accustomed to
programming 3D applications in Java. JOGL is very
easy to set up and start programming with. Installation
is a snap by simply copying two DLL files and a JAR
file into the appropriate Java directories.
 The following code fragment is the display
method of a simple Java application that uses JOGL to
display a rotating white square against a blue
background.

public void display(GLDrawable glDrawable) {
 GL gl = glDrawable.getGL();

 gl.glRotatef(ANGLE, 0, 0, 1);

 gl.glClear(GL.GL_COLOR_BUFFER_BIT);

 gl.glBegin(GL.GL_QUADS);
 gl.glVertex3f(-70, 70, 0);
 gl.glVertex3f(70, 70, 0);
 gl.glVertex3f(70, -70, 0);
 gl.glVertex3f(-70, -70, 0);
 gl.glEnd();
 }

 With the exception of the first line in this method
that is used to get access to the GL object, the method
calls should all look familiar to those who have
previously worked with OpenGL. Of note is the use of
‘gl.’ as a prefix to all OpenGL commands, i.e., gl is
the instantiation of the OpenGL super class containing
all of the OpenGL methods and variables.

3. The Java3D API
Traditionally, 3D programming has been very
procedural. Much of the code base today is written in
C, potentially with some inline assembly instructions.
Java3D is an attempt to create a new, fully object-
oriented paradigm for 3D programming. Even more,
Java3D attempts to provide a complete framework for
creating a 3D virtual universe. Everything in Java3D
is centered on building a "scene graph", which is a tree
data structure designed to couple together physical
objects in the 3D world with their behaviors.

The object-oriented framework approach that
Java3D takes means that the programmer is working
with a much more abstracted API than with an API
such as JOGL.
 The concept of the "scene graph" itself takes
some getting used to. There is a definitive set of rules
about how to construct a legal scene graph which must
be adhered to in order for the program to run. Even
after reading through the documentation and
understanding these rules, it still takes a fair amount of
experimentation before one is able to append the
various behaviors and objects into a scene graph that
are required to produce the desired result.
 The code fragment in figure 1 is a portion of a
Java application that uses Java3D to display a cube
rotating on the Y axis. The difference in styles
between JOGL and java3D are clear.

4. The API Debate
There has been a fair amount of debate as to which
API should be used. Sun has thrown more of its
weight behind the JOGL initiative recently, which has
left some wondering about the fate of Java3D.
However, at the JavaOne 2004 conference, Sun
announced that Java3D would be open sourced. This
should insure that both APIs will be available (and
improved) for the foreseeable future. Continuing both
projects will create the competition and choice that
ultimately fuels better technology.

5. Testing Strategy
In order to compare these APIs as fairly as possible,
seven pairs of programs were developed (one using
JOGL and one using Java3D) which were very close
in features and behaviors. Benchmarking was then
performed against each implementation, and the
results recorded. The metric used for all tests was
frames per second.

5.1. Development Tools
All of the Java programs were written and compiled
using the Java 2 Software Development Kit version
1.4.2_05, available from Sun Microsystems
(http://java.sun.com/j2se/1.4.2).
 Programs written using JOGL were tested using
JOGL version 1.1b05, available from Sun
Microsystems (https://JOGL.dev.java.net).
 Programs written using Java3D were tested using
Java3D version 1.3.1, available from Sun
Microsystems (http://java.sun.com/products/java-
media/3D). For each program written using Java3D,

private BranchGroup createScene() {
 BranchGroup scene = new BranchGroup();

 TransformGroup spin = new TransformGroup();
 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 scene.addChild(spin);

 spin.addChild(new ColorCube(CUBE_SIZE));

 Alpha rotation = new Alpha(-1, 4000);

 RotationInterpolator rotator = new RotationInterpolator(rotation, spin);

 BoundingSphere bounds = new BoundingSphere();
 rotator.setSchedulingBounds(bounds);
 spin.addChild(rotator);

 scene.compile();
 return scene;
 }
}

Figure 1: Java3D sample code fragment.

both the OpenGL implementation and the DirectX
implementation were tested.

5.2. Testing Tools
Benchmarking of the programs was performed using
Fraps, which shows an on screen display of the frames
per second that any hardware accelerated graphics
application is producing. Fraps is available from
http://www.fraps.com.

5.3. Configuration
All programs were tested on a Dell Inspiron XPS
laptop running Windows XP with the following
hardware configuration:
 CPU: 3.4 GHz
 RAM: 1 GB
 Video: ATI Mobility 9800 256 MB
 All results are shown in the relevant columns of
table 1. The rows relate the different implementation
modes: Java3D-OpenGL, Java3D-DirectX, and JOGL.
The final two rows show the percentage improvement
using the Java3D-OpenGL results as a basis for
comparison.

5.4. Test #1: Rotating Cube
The first pair of applications displays a rotating cube.
More specifically, the application displays a cube in
which each side of the cube is a different color, and
rotates at a constant rate that is independent of the
frames per second.
 Although this is a very simple application, the
frames per second are outstanding. In this test, JOGL
performed 15% better than Java3D with OpenGL.
However, Java3D with DirectX was the real winner
here; it performed 20% better than JOGL, and 37%

better than Java3D with OpenGL. These results are
exemplified in the first column of table 1.

5.5. Test #2: Rotating Sphere A
This pair of applications each displays a rotating
sphere that is defined using 10,000 polygons. This
application pair displays a solid sphere that is rotating
at a constant rate. The performance results for this
experiment are shown in the second column of table 1.
The results in this test are closer than those in Test #1
but the differences are still significant.

5.6. Test #3: Rotating Sphere B
This pair of applications is the same as the "Sphere A"
set but has generated normals and material attributes
applied for specular, diffuse, and ambient lighting. A
light source is added that is directed straight down the
Z axis.
 In this test, both versions of Java3D out
performed the JOGL application. We suspect that the
Java3D framework is imposing some automatic
optimizations to keep performance high that the JOGL
implementation does not incorporate. These results are
related in column 3 of table 1.

5.7. Test #4: Rotating Sphere C
This pair of applications is the same as the "Sphere B"
set but adds texture mapping to the sphere. The texture
map is a 512 × 512 linear image of the earth. The light
source is moved to the right side to produce a different
lighting angle. The results for this experiment are
nearly identical to that of test #3 both in terms of raw
results and percentage improvement from the base.
 Of particular interest is that all of the results for
Test #4 actually achieved higher results than Test #3

 Rotate Cube Rotate
Sphere A

Rotate
Sphere B

Rotate
Sphere C

Stress Test
A

Stress Test
B

Java3D
OpenGL 1466 671 672 681 198 176

Java3D
DirectX 2006 783 768 786 179 169

JOGL 1678 728 452 455 * *
DirectX

Improvemen
t

37% 17% 14% 15% -10% -4%

JOGL
Improvemen

t
15% 9% -33% -33% * *

Table 1: Summary of results generated by the six performance tests.
*The performance of JOGL in these experiments was too poor too compare effectively.

(columns 3 and 4 of table 1) when the expectation
would be for performance to decrease because of the
additional properties added to the object. However,
this improved result is not statistically significant,
amounting to approximately a 1% improvement and is
in part a random variation in the performance results.
The main conclusion from this improvement in
performance is that the number of polygons
incorporated into the scene is the limiting factor. The
added load of the texture mapping has no significant
impact since it is likely handled by a separate
functional unit of the Graphical Processing Unit
(GPU).

5.8. Test #5: Stress Test A
These pair of applications attempts to put more load
on the system and effectively reduce the frames per
second. This environment again is based on displaying
a number of high resolution spheres. All of the spheres
are texture mapped with the same image, and the light
source is the same as that in the "Sphere C" set.
 JOGL performed particularly ineffective in this
experiment. The JOGL version of this application was
limited to displaying a total of 17 spheres while the
Java3D version displays a total of 32 spheres. Even
with this advantage JOGL was only able to achieve 39
frames per second. With the rate of decrease in
performance with increasing numbers of spheres, the
frame rate using JOGL was reduced below an
effective rate of measurement for use with Fraps.
 Java3D, however, seemed to have some built in
optimizations that allowed the continued addition of
spheres without impacting performance significantly.
After adding 32 spheres, the visible screen space was
almost completely occupied and adding non-visible
spheres did not decrease performance further. The
results are listed in column five of table 1.
 This stress test shows an extreme difference in
performance between the Java3D and JOGL
implementations. One can only assume that Java3D is
performing significant optimizations. It is interesting
to note that in stress testing, Java3D with OpenGL
finally performed better than Java3D with DirectX by
10%. Considering that all other tests showed Java3D
with DirectX out performing Java3D with OpenGL by
approximately 15% this is quite a significant turn-
around and shows the OpenGL drivers advantages for
very complex scenes.

5.9. Test #6: Stress Test B
This pair of applications is the same as the "Stress
Test A" set except that each sphere is texture mapped
with one of five different textures. Additionally, the

JOGL application was reduced from 17 spheres to just
7, since performance dropped below a realistically
measurable level with anything above this.
 These results are very similar to those in Test #5.
The introduction of additional textures decreased
performance across the board. Compared with the
results of Test #5, the reduction in performance in
Java3D with OpenGL was 11%, while Java3D with
DirectX performance was reduced by 6%. JOGL again
performs too poorly to compare effectively only
providing 29 frames per second with measly seven
spheres.

6. Conclusion
Both of these APIs exhibited excellent performance
overall. The automatic optimizations being performed
by the Java3D framework gave it much better
performance than JOGL in many of the tests. This
advantage partly involves the fact that JOGL is a new
environment that still requires enhancement. Given the
number of polygons in the spheres a robust
implementation could easily improve performance
through application of effective minimization
algorithms.
 The abstraction in Java3D can be very powerful.
It is certainly convenient to be able to create a
SimpleUniverse object and start adding other objects
and behaviors to it. The abstraction also allows a
single API to be used with either OpenGL drivers or
DirectX drivers. However, there are tradeoffs to the
extra abstraction. For example, it is much more
difficult to get at the details of what the framework is
doing and have the fine-grained control that is
sometimes needed in 3D programs.
 By comparison, the JOGL API has the most
flexibility (since it is just a basic port of OpenGL), but
the programmer is forced to code each and every
optimization required to get their application to
perform at an acceptable level. Additionally, JOGL
has the advantage of providing a familiar environment
to many graphics programmers.
 Ultimately each API has its place, depending on
the requirements of the application that is being
developed. Java3D could speed the development of
applications that can be done at a more abstract level,
while other programs that require more low level
control would probably benefit most from JOGL.
 The other conclusion one must come to is that
choice is the most important aspect of all. In most of
the tests, the DirectX version of Java3D out-
performed both of the OpenGL implementations.

7. References
[1] SGI and Sun Microsystems, SGI and Sun

Microsystems Software Platforms to Work
Seamlessly Together with Java Bindings to
OpenGL, Press Release, 2003.
(http://www.sun.com/smi/Press/sunflash/2003-
07/sunflash.20030728.1.html)

[2] James Keogh, J2EE: The complete Reference,
McGraw-Hill Osborne Media, 2002.

[3] Gene Davis, Learning Java Bindings For Open
Gl JOGL, Authorhouse, 2004.

[4] Henry Sowizral, Kevin Rushforth, Michael
Deering, The Java 3D(TM) API Specification,
Addison-Wesley Pub Co., 2000.

[5] Fraps (http://www.fraps.com)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

