
Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

Sheldon Teerlink, Access Data, Lindon, UT 84042. steerlink@accessdata.com
Robert F. Erbacher, Computer Science Department, Utah State University,

Logan, UT 843212, Robert.Erbacher@usu.edu, Phone: 435-797-3291,
Fax: 435-797-3265.

Abstract—Computer forensics is the preservation, analysis, and
interpretation of computer data. It is a crucial tool in the arsenal of
law enforcement investigators, national security analysts, and
corporate computer emergency response teams. There is a need for
software that aids investigators in locating data on hard drives left by
persons committing illegal activities. Analysts use forensic
techniques to analyze insider attacks on organizations and recover
data hidden or deleted by disgruntled employees or attackers.
Advanced software tools are needed to reduce the tedious efforts of
forensic examiners, especially when searching large hard drives. This
paper discusses the background, algorithms, fundamentals, and
techniques intrinsic to the visual analysis of typical computer forensic
data. In terms of the visualization technique itself we discuss a
visualization techniques to represent file statistics such as file size,
last access date, creation date, last modification date, owner, number
of i-nodes for fragmentation, and file type. The user interface to this
software allows file searching, pattern matching, and the display of
file contents.

Index Terms—Computer Forensics, Visualization, User Interfaces,
Software Architecture, Algorithms

I. INTRODUCTION
Computer forensics is the preservation, analysis, and

interpretation of computer data. In a world where the number
of crimes committed using computers is increasing rapidly, a
need exists for advanced forensic software tools. These tools
allow investigators to follow digital tracks left by persons
committing illegal activities. Plain text documents, log files, or
even system files may contain traces of this evidence. More
technologically advanced criminals may even conceal
information by deleting it, encrypting it, or embedding it
inside another file. With the large amount of storage space
available on modern hard drives, searching for a single file
becomes tedious without the help of specialized forensic tools.

 Using visualization techniques to display information about
computer data can help forensic specialists direct their
searches to suspicious files. Attempts to interpret mass
amounts of data that is not correlated or meaningful can waste
a great deal of time and require high levels of both patience
and tolerance for error. A well quoted phrase, “a picture is
worth a thousand words”, directly applies to the assumptions
of this research. The human visual system has the ability to
interpret and comprehend pictures, video, and charts much
faster than reading a description of the same material. This is a
result of the fact that the human brain performs some
processing early in the chain of processing visual input.[5].
This is a result of the human visual system’s ability to
examine graphics in parallel [4] but text only serially.

Using this concept of visual perception, the researchers
developed a graphical user interface (GUI) that displays file
information visually. A user is able to query a specific
directory and see statistics such as file size, access date,
creation date, modification date, owner, and file type. Pixel
intensity and color represent file type data, with each pixel
representing an individual file. By clicking on the display and
traversing the associated menus, a user can obtain information
about a suspect file in more detail.

Viewing information about multiple files and understanding
the relationship between them aids in forensic analysis. The
user interface for this software allows file searching, pattern
matching, and display of file contents. Each of these options
provides a deeper analysis of the data stored on the hard drive
and results in a flexible tool for locating criminal evidence.

This paper presents background as to the need for advanced
forensics tools, the developed visualization capabilities, and
the results of initial user studies comparing the visualization
with Linux-based command line investigations. In addition to
merely discussing the techniques abstractly, the details of the
algorithms for the visualization techniques are presented.
Additionally, details as to how to configure the environment
for user testing are provided. These details will greatly aid
additional researcher in performing significant research.

II. DATA HIDING AND CONCEALMENT
Most computers under investigation contain hidden data in

one form or another [2]. It may be password protected,
encrypted, compressed, renamed, placed in an unusual
location, appended to another file, or may fail to show up in a
directory listing because system programs were modified.
Recent consumer hard drives are quite large, and when full,
contain tens of thousands of files. An average size hard drive
for a home user today is about 60GB. When servers and non-
traditional computer users are considered, the amount of
storage easily meets or exceeds 100GB. It is easy to imagine
how daunting a task it is to comb such a large hard drive for
evidence without the help of any special forensic tools.

Figure 1 shows the 20 largest file types on a typical hard
drive. This data represents a typical home user’s Windows
2000 desktop machine and reveals the types of files occupying
the most space. This Windows 2000 machine has a 40GB hard
drive with 15GB of it in use. These 20 file types consume
approximately seventy percent of the used storage. It is safe to
assume that a full 100GB hard drive would have similar ratios
to the ones found on our Windows machine; or as is more

 Foundations for Visual Forensic Analysis
Sheldon Teerlink, Robert F. Erbacher, Member, IEEE

Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

likely a larger percentage of the files would consist of images
and sound files. These images and sound files could be rapidly
reduced, leaving essentially the same setup as we have
identified..

Figure 1: Pie chart showing the 20 largest file types on a typical
Windows2000 machine, occupying 70% of the total storage.

Knowing the type and number of files stored on a hard drive

can ease the search process. This knowledge helps an
investigator determine how effective string matching will be
or what applications he will need to open certain files. In the
system mentioned above, the majority of the consumed
storage space is in data files. Included are .m3a, .mdf, .mp3,
.dbx, .zip, .mhk, .mdb, .jpg, and, .hxs. The next most common
files include the shared libraries (.dll and .lib), followed by
executables (.exe), files with no extension, and dump files
(.dmp). Many of the unfamiliar file endings like .drs and .mhk
are application specific. For example, .mhk files are data files
for Riven, the predecessor to the game Myst. This knowledge
during an investigation can speed the analysis process.

Many renowned security organizations such as the
SysAdmin, Audit, Network, and Security (SANS) Institute
and the Computer Emergency Response Team (CERT)
Coordination Center offer guidelines and information about
software that investigators can use to aid their search of hard
drives and recovery of hidden data [3], [9]. Once files are
found, it is a simple case of opening the file in a text editor. If
the file is encrypted, a password cracking program called
L0phtCrack (LC 5) or similar can be used to retrieve the secret
key [1]. Criminals are clever, but if there is a way to hide the
data without completely destroying it, there is a way to locate
it. It is simply a matter of how much time it will take to reveal
it. While commercial tools do exist, such as the Forensic Tool
Kit, these tools require the analyst to search directories of
recovered files or look at source code for files. Though
powerful, these tools can be time consuming and frustrating to
examiners who are unfamiliar with the data hiding techniques
or file formats used in a particular case. The purpose of this
research is to provide novel techniques to reduce this time
requirement and improve the efficiency of forensic analysts.

III. SOFTWARE
A. Capabilities
In this section, the capabilities of the implemented test

system are presented. While the focus is primarily on the
visual characteristics of the environment, the interactive
metaphors incorporated into the environment are the
contribution that will truly make it useful and allow an
effective forensic exploration process.

The goal of this project is to locate suspect files on a large
hard drive. A visualization display has been developed that
renders data from a selected region of the file system residing
on the hard drive of interest. Typically, this is a directory of
files or a directory containing both files and subdirectories.

The visualization environment allows implementation of
two proposed visualization techniques, a hierarchical
visualization and a non-hierarchical visualization. An
investigator or user of the software can switch between display
methods, thus altering the visual representation of the selected
hard drive region. Each visual display or representation is
interactive and sensitive to mouse clicks. Selecting a file on
the display by clicking on it with the mouse pops up text
information, such as file type, file name, permissions, owner,
group, access time, modify time, and creation time. Sliding the
mouse over the display and clicking on files of interest allows
fast and easy access to file information helpful in the
investigation. Mouse and menu navigation allow the
investigator to open files directly from the visualization
display with an application of their choosing. When the user
encounters a file with a name and type that do not match, he
can open the file immediately and view its contents.

Our system also offers the ability to view the contents of
archived or compressed files in the same way all other files are
viewed. The idea here is that the user can select the archived
or compressed file from the visualization and, in effect, zoom
into the file to see what files are contained within. This feature
is called archive file zooming. Each file in the compressed or
archived file is colored according to a predetermined scheme.

If the user wishes to extract the files, it is possible directly
from the visualization using the mouse and menu pop-ups.
Files in the archived or compressed directory can be queried
and opened. One additional coloring tag is used in both
proposed visualization techniques to mark altered system files.
The idea behind tagging altered system files is similar to the
concept used by the commercial product Tripwire [6].
Tripwire allows a system administrator to create a baseline
md5 digest for selected files including system commands and
system libraries. At periodic intervals, say every day or week,
the administrator compares the baseline against a current md5
digest to determine if any files have been altered. Altered files
may be an indication of system compromise, to which the
administrator can act accordingly.

Our system uses a database containing md5 digests for
system files based on operating system (OS) and kernel
versions. For example, the md5 digest of the ls system
command for the Linux Redhat 9 OS running kernel version
2.4.20-8 is ’dbc1a18b2e447e0e0f7c139b1cc79454’. If this 128
bit key queried from the database does not match the md5

Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

digest of the ls command on the investigated system, the block
or rectangle is colored with a hatch pattern; see figure 2.
Identifying altered system files can help the investigator to
further direct the search for evidence.

B. Visualization Methods
For this research, two visualization techniques were

deployed for the representation of file statistics relevant to
forensic analysis. These techniques are designed around
intrinsically different metaphors. The first metaphor represents
file information without regard to directory structure or
hierarchical information; the block diagram visualization. The
detail is thrown away. Each file is simply represented as a
small square box with its intensity controlled by a user
selectable parameter. Using this technique is better for
examining individual directories, but may lack necessary
information for the forensic examiner. This technique does
allow filtering based on selectable parameters, for instance
figure 3 shows an example filtered on file size in which the
intensity of the block is controlled by file size. By controlling
parameters affecting the visual emphasis, analysts can quickly
adapt the visualization to their current needs.

Figure 3: Square block diagram filtered on file size. The light-colored blocks
are the larger files and the darker-colored blocks are the smaller.

The second visualization metaphor incorporates hierarchical

information; namely Tree-maps, figure 4 [8]. This reduces the
amount of information that can be represented, but
incorporates critical information related to a file’s position
within the hierarchy that is lacking in the first metaphor.

Schneiderman [8] explains that tree-maps are a 2D space-
filling algorithm for complex tree structures. They are
designed for human perception by displaying the entire tree
structure in one screen. Each file is a shaded box that adheres
to a chosen coloring scheme that highlights file and directory
boundaries. Box size is determined by two parameters; the
size of the user selected display region and percentage of the
selected directory the file occupies. Subdirectories are
likewise displayed, subdividing each region until individual
files alone are represented. Other file directory
representations, such as Windows Explorer use nodes and
edges rotated on their side, and always require scrolling up
and down to view the complex structure. Tree-maps facilitate
easy recognition of the largest files because they take up the
most space in the 2D display. The method of using tree-maps
to visualize data storage and directory structure greatly
reduces the time it takes to locate large files in a tree structure
that is several levels deep with tens of thousands of files.

Figure 5: Square block diagram filtered on file modify time. The white block
represents a file modified more recently than other files in /usr/libexec.

Tree-maps are primarily designed to emphasize large files.

However, Schneiderman does point out that a user can drag a
mouse over the display and click on a shaded box to query the
system for the file name or other information. Such additions
may enhance the usefulness of tree-maps, but stand-alone tree-
maps for computer forensics contain many weaknesses. Small
files and directories are hidden among larger files and may not
even show up on the display. An investigator may be looking
for a simple file on a massive hard drive (100+GB). If the file

Figure 2: Square block view revealing an altered system file in the

fourth column and fifth row

Figure 4: Tree map view showing modified file recency.

Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

is small, or if the disk contains numerous files, a single file
will hardly stand out. For the researchers’ purposes, stand-
alone tree-maps require enhancement that provides the user
with advanced filtering and display techniques.

With either of the aforementioned techniques, correct visual
emphasis will make anomalous files stand out like a sore
thumb, figure 5. While this example is demonstrated with file
modifications time, the metaphor will apply similarly to any
attribute available within the data set.

IV. ARCHITECTURE
We used Linux as the operating platform for the forensic

software mainly because of its native support for needed
functionality and support of numerous file systems. Our
software does not run natively on the Windows operating
system, but reads and processes FAT and NTFS partitions;
though with emulation environments such as Cygwin it is
likely possible to execute the tool on any platform. One of the
key libraries to the development of the needed forensic
capabilities was the magic library that allows the software to
determine the type of a file from a database of nearly a
thousand different formats. The magic library does this by
reading a certain number of bytes from the file to extract a
magic key, usually the first few bytes of the file. This magic
key is used to determine if the file is of a known type such as a
spreadsheet, a JPEG image, or a compressed file. Using magic
and other built-in libraries greatly reduces development time.

The Qt [7] GUI API was selected for building the user
interface. Qt is platform independent and compiles directly to
the same level as the native windowing system. One of the
huge advantages of Qt is obviously speed because
communication is not being directed through an extra layer of
abstraction. Qt supports OpenGL windows for advanced
visualization as well as a number of data structures and file
reading capabilities that make it much more than only a GUI
API. When the time comes to add advanced visualization
schemes the support for seamless OpenGL integration within
our environment will greatly aid future development.

Figure 6: High-level view of the forensic software architecture.

Figure 6 shows a high-level view of the system components

and their inter-connections. The DataCollector object reads
file information from the hard drive image and prepares the
data for visualization.

The library libmagic contains the algorithms for
determining various file types, the object Stat collects time
stamps on the files that have the most recent activity, and the
object MD5 computes the md5 hash of each file. Time stamps
are collected to aid the visualization rendering process and are
discussed in detail in the algorithms section.

Once attribute data is acquired from the hard drive image, it
is stored in a data structure of type ForensicFileInfo that
contains the file type, md5 hash, and attribute information. All
the slow file I/O operations are clustered at the beginning of
the pipeline, so the user waits initially for the software to load
but does not have to wait during analysis. Containers A and D
store the ForensicFileInfo for every file in the image and
decompressed file respectively. As the data travels through the
pipeline, the user can filter the data so only a subset of the data
is under analysis at any given time. For example, the user may
only want to view the /usr/games directory and exclude
everything else. Container F stores the ForensicFileInfo only
for the directories under examination. Our main motivation for
filtering is the improved speed we get by ignoring a large
portion of the files. Object PreProcess prepares the
ForensicFileInfo for visualization by using some simple
algorithms, discussed in the next section, to convert certain
attributes from the temporal domain to the spatial domain. As
mentioned before, our methods use time-based file attributes
to create filtered tree-maps and square block diagrams.

During the rendering process, objects Tree-map and
SquareBlock make use of the user defined coloring schemes
and cryptographic hash database (MD5DB) to create a
meaningful visualization. Once the visualization is rendered to
the screen, a user can query it for information and make
requests to decompress or open files. Our current
decompression engine only operates on gzip and tar files, but
it could easily be swapped for a more comprehensive
decompression module in the future. ForensicFileInfo
obtained from a decompressed or nonarchived file is stored in
container D. Storing unarchived data in a separate container
allows the user to switch between visualizations generated
from containers A and D without initializing the
DataCollector to restore the overwritten data in A. When a
request to open a file is made, it is handled by the FileView
object. The FileView object verifies there is an appropriate
application to open the file, forks a process, and hands it to the
external application using the Linux command execl().

V. ALGORITHMS
Our first algorithm is contained in the Stat object of the

DataCollector. Its sole responsibility is to record the most
recent or maximum value access, modify, and creation time of
the image files. Time stamps are unsigned integers
representing the number of seconds since midnight on January
1, 1970. Obviously, a larger integer time stamp represents a
more recent file. These values are used to render the
visualizations based on the last time that file activity occurred.
It may be several months before a computer is analyzed, and
we do not want this fact showing up in the visualizations. We

Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

want to view the computer system as it existed at time t, where
t is the last time the computer was powered down.

Seconds Conversion Significant Value

60
900

1800
3600

21600
86400

345600
604800

1209600
2419200
7257600

14515200
29030400
58060800

1 min
15 min
30 min
1 hour

6 hours
1 day

4 days
7 days

14 days
28 days

3 months
6 months

1 year
2 years

77
59
45
34
26
20
15
11

8
6
4
3
2
1

Table 1: How time stamps are converted to significant values.

These maximum value time stamps are used by the

PreProcess module to convert file times to the spatial
domain. The idea behind the conversion is grouping time
stamps into categories of temporal importance. Files are
considered more important if they have recent time stamps.
The older the time stamp, the less visible the file is in the
visualizations. For example, let us consider three files in a
directory. One was accessed two days ago, the second was
accessed a month ago, and the third was accessed two years
ago. We want the file accessed two days ago to show up most
visibly in the visualization because it is most relevant. At the
same time we do not want to deal with the difference between
files accessed six months ago and those accessed seven
months ago. It would be nice to group files accessed in the
same significant period of time. This means all files accessed
between nine months and one year ago would all map to the
same significance value. Higher significance values are given
to files accessed or modified more recently. Table 1 shows
how the mapping of significant values works.

If we consider analysis of the modification time of files, the
first column in the table gives the number of seconds since the
file was modified from time t. Column two is the amount of
time using different (more comprehensible) units, and column
three is the significant value. It is easy to see that a file
modified less than a minute ago receives a significant value of
77 while a file modified more than a year ago but less than
two years receives a value of 2. These significant values are
used to associate visual acuity, i.e., adjust the applied
grayscale level based on the significance value. When
preprocessing is run on file size, the file’s size becomes its
significant value. Thus, the size of a file will be the primary
factor in identifying the files visual acuity within the visual
display. Gray tones may vary in a range between 0 and 255,
so, naturally, we scale the significance values within these
bounds. Significant values are generated for as many distinct
periods as necessary.

Currently there are fourteen significance periods. Starting
from one, the size of each significant value is a third larger
than its predecessor. These values are generated using the
algorithm below. If two squares are seen side by side, one is

easily distinguished from the other when it is a third larger or
a third brighter; i.e. the 30% increase was chosen arbitrarily
but designed to ensure ease of differentiation.

seed = 1;
for(i=0; i<TIME DOMAINS; i++)
 {
 next = ceil(seed * 1.3);
 seed = next;
 }

Drawing the square block visualization so the files remain
square and large as possible, we use the following algorithm.

width<= height ? s = width : s = height;
while ((width/s)*(height/s)<n && s > 0)
 s−−;
if(s > 0)
 {
 x_off = (width % s) / 2.0;
 total_x= (width - (2*x_off)) / s;
 total_y = ceil(n / total_x);
 y_off=(height-(s * total_y)) / 2.0;
 }

Dimensions of the drawing area are given by height and
width. s is the length of one side of the square. Using a
coordinate system centered in the top left corner that grows
down and to the right, x off and y off are the x and y locations
of where the first square is drawn. The remaining two
variables, total x and total y, contain the number of square
blocks in the x and y directions, respectively. In some cases, it
may not be possible to draw all the files in the given real
estate; hence, we verify this is not the case using the
conditional statement if(s > 0).

VI. DATA
For our user evaluation we used two different data sets for

searching, one for each method. The goal of the data is
twofold. First, we want a relatively substantial search space,
and, second, we want to simulate a typical directory structure
found on a home system. A search space was selected that was
large enough to occupy an investigator’s time but small
enough to have a high probability of locating files; i.e. since
we wished to perform tests with multiple subjects we had time
constraints not presented to real analysts in typical scenarios.
For these two reasons, a search space of 2GB was used. The
Linux directory structure was selected to match the
development environment; a Windows file system could have
served as a substitute. Our test data was generated by creating
four new user accounts and filling them with typical data
found in most user accounts. This was achieved by logging in
as the new user and operating the system for a time. Suspect
files were then created and hidden in the user accounts, as well
as other directories. These suspect files were accessed,
modified, and handled in ways representative of a criminal
trying to conceal them, such as name changing, directory
relocation, and compressing. Next a mountable file system
was created of the hard drive, for each case, as follows:

Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

dd if=/dev/zero of=/data/caseX.image
count=4458220 bs=512
mke2fs /data/caseX.image

After creating an ext2 file system, it was mounted at
/mnt/forensic using the mount command:

mount -o loop -t ext2
/data/caseX.image/mnt/forensic

With root privilege, selected directories were copied to the
new file system including the suspect files. Options -p and -r
were used to preserve time stamps and copy subdirectories.

Two user accounts were copied for each case. After copying
2GB’s of system and other files, caseX.image was unmounted
using the umount command and remounted read only.

umount /data/caseX.image
mount -o ro,loop -t ext2 /data/caseX.image
/mnt/forensic

Now that the new file system is mounted read only, it can
be analyzed without modifying any of the data. It is noted here
that the forensic process step of creating an exact image of the
hard drive with forensic hardware was not used due to the lack
of any court presentations.

Both data sets are nearly identical to each other, so one does
not contain files less concealed than another, thus skewing the
results of the experiment. Nevertheless, the placement of the
hidden files varies between sets. Information about suspect
files gleaned from one method cannot be transferred to the
second. The data set is a scaled down version of a Linux file
system. Directories used in include: /bin, /sbin,
/lost+found, /usr, /lib, /root, /dev, /home,
and /tftpboot. Each data set contains an altered system file
(changed md5 value), a renamed media file, and a renamed
office document. Table 2 shows the details of the placed files.

Method Original File Hidden File Attribute

LCS
LCS
LCS
FSS
FSS
FSS

/bin/ls
marijuana.jpg
delivery.xls
/sbin/halt
hidout.jpg
ospina.doc

/bin/ls
/lib/libdth.so.420
/home/escobar/backgammon.gz
/sbin/halt
/usr/games/phantom menace.avi
/home/villabos/happy days.bmp

md5 mismatch
renamed
renamed
md5 mismatch
renamed
renamed

Table 2: Locations of each hidden or altered file used in the different search
methods; Linux Command Search (LCS) or Forensic Software Search (FSS).

VII. EVALUATION
 A preliminary evaluation of the effectiveness of the
developed techniques was conducted through a controlled,
human-computer interaction experiment. In this experiment, a
human subject was tasked with looking for three altered or
hidden files on a hard drive using the two specified methods.
When the subjects began each method, they were instructed to
look for an unknown number of files, some of which are
related to drug trafficking. The first method was to use
traditional Linux commands such as ls, cd, grep, file, md5sum,
stat, and find. The second method was to use the developed
visualization techniques. During the study, each subject
recorded three pieces of information: the time the study began,

the discovery time and name of each suspect file, and the time
the study ended. The ability to determine if one method was
superior to another was anticipated as represented by the
discovery of more files in less time.

Half the subjects began the experiment using the built-in
system commands and finished using the visualization
software. The other half of the subjects performed the same
tests but in reverse order starting with the visualization
software. By altering the methods the subjects started with, it
was hoped that the researchers would be able to determine if
the use of the first system affected the use of the second.
Initially, six subjects were selected for this experiment, each
of whom had general computer knowledge and varying levels
of experience with the Linux operating system. Before
participating in the study each subject filled out a pre-test
questionnaire to categorize their abilities and identify how
they would hide files or conceal evidence of a crime on their
own computer and how they would search for hidden or
concealed files on another’s computer.

The experiments were run for 30 minutes for each of the
two methods. The subjects were then asked to fill out a
questionnaire to help the researchers understand which system
was easier for them to use and which provided greater aid in
locating hidden or altered files. The subjects were also
allowed to write other comments about the experiment that
could be used to make improvements to the software or
visualization methods. Comparisons between these
preliminary results were made to determine whether the
visualization techniques developed would aid investigators in
locating files faster than traditional UNIX commands.

A. Results
 After performing the user experiments, several analyses

were performed to determine the effectiveness of the results
and their impact. First, the efficiency and effectiveness of the
techniques were compared. Second, the impact on the results
of performing one experiment before the other was examined.
Finally, the different search techniques employed by the test
subjects and their effectiveness were compared and contrasted.

Skill 1 2 3 4 5 6

directory traversal / view contents (cd, ls)
vi, emacs
shell scripting
writing / compiling C/C++
other software development (e.g. Java)
regular expressions
security (e.g. iptables,tcpdump)
package / library management
kernel management
filesystem mounting
networking (e.g. Samba, NFS, ports)
grep
md5sum
stat
file
find

x
x
x
x
x
x
-
-
-
x
x
x
x
x
x
x

x
x
x
x
-
x
-
-
-
x
-
x
x
x
x
x

x
x
-
x
-
x
-
-
-
-
-
x
x
x
x
x

x
x
x
x
x
x
-
-
-
-
-
x
-
x
-
-

x
x
x
x
-
x
x
x
x
x
x
x
x
-
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Table 3: Raw skills of subjects who participated in our experiment.

B. Tester’s Abilities
Table 3 outlines the Linux abilities of each test subject. This

Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

information was collected in the first survey before the
subjects began any analysis. There is not strong evidence here
to suggest that subjects with advanced Linux skills performed
better in the experiment using either method. Subjects 3497
and 6324 have different skill sets, but both found all files
using the forensic software. Subject 9121, who stated he
possessed all the skills, only found one file with each method.
We expected that subjects with advanced skills would be more
successful locating the files, but this was not the case.
However, it appears some of the subjects were able to make
the skill to success transition where others were not.

Some subjects carried skills that attributed to their success
that we were unable to measure. A point for future work is to
identify a skill set or knowledge base that caters to success.

C. Time and Quantity
 The first question was to answer whether the forensic

visualization techniques were capable of helping the subjects
locate more hidden files in less time than using the simple
command line search techniques. Ultimately, each subject
using the forensic visualization technique was able to locate a
number of files greater than or equal to the number they
located using the Linux-based command search. Only one
tester located the same number of files using both methods.
All other subjects located an additional file using the forensic
visualization techniques over the traditional Linux-based
command search. The results illustrate that on average, 53
percent more files were located using the developed forensic
visualization techniques. This suggests that organizing
information in a way that supports clustering and outlier
detection increases the probability of discovering suspect files,
though this finding needs to be supported by further research
with a larger number of subjects.

Comparison of Total Files Located Over Time

0
2
4
6
8

10
12
14
16

1 4 7 10 13 16 19 22 25 28

Minutes

To
ta

l F
ile

s
Lo

ca
te

d

Forensic Softw are Search Linux Command Search

Figure 7: This plot shows the number of files located over time assuming all
6 subjects were searching simultaneously.

Once started, the subjects took an average of 13.7 minutes

between files using the command search. Using the forensic
visualization techniques, this value was greatly reduced to 8.8
minutes. A 35 percent reduction in time was realized using the
forensic visualization techniques. Concerning time, another
supporting statistic shows that the time to locate the first file
was 57 percent faster using the forensic visualization
techniques. This shows that the subjects were easily able to

use the visualization techniques and achieve results in just a
few minutes. Figure 7 shows the relationship between the
number of files found over time assuming all the subjects were
searching simultaneously. This plot shows that at any given
time during the study, more files were identified using the
visualizations than with the Linux-based command search.

An interesting point, amid all the data regarding the speed
and success of the forensic visualization techniques, is that the
renamed media file was never located using the Linux-based
command search. File /lib/libdth.so.420 was a .jpg hiding
among a sea of shared libraries. It could have been detected
using the command ‘file /lib/*’, which would have listed out
the type of each file in the directory. A search of the output
would yield a single line stating that the file was really a JPEG
image and not a shared library as its extension implied.

Contrast this process with the easy to view visualization
created by the forensic software, essentially similar to figure 5.
By filtering on modification time, the square block
visualization scheme yields a field of mostly dark squares with
a lone white square representing a file with recent activity
(i.e., it has been recently modified). Clicking on the white
square pops up a message box containing the file’s details,
including its name and type. In a real world scenario, this
means time stamps can be used to identify suspect files on the
premise that they have witnessed recent activity. This suggests
the developed visualization techniques are an effective method
for rapidly identifying outlier files.

D. Interaction of Methods
 Another issue that needed to be resolved was whether a

human subject’s performance depended on the order in which
each method was applied. In essence, did the first method of
searching affect the second, or are the results independent of
order? This was determined by examining changes in number
of files located and changes in mean time to locate a file.

Figure 8: Mean time to locate the first file using different search techniques.

Figures 8 and 9 show the average number of minutes it

takes to locate files using both methods. More specifically,
figure 8 shows the mean time to locate a first file using each of
the techniques. This mean value is a combined metric over all
test subjects, whether they used the command-based test or the
visualization first. No matter what order the different tests
were performed it is clear the visualization resulted in an

Proceedings of the 7th IEEE Workshop on Information Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

enormous reduction in analysis time. Figure 9 shows the mean
time to find an additional file from the previous one, averaged
over all steps. Once started, the subjects took an average of
13.7 minutes between files using the command search. Using
the forensic software, this value was greatly reduced to 8.8
minutes. A 35 percent reduction in time was realized using the
forensic search software.

Figure 9: Mean time to locate consecutive files.

Figures 10 and 11 identify the number of files found and the

mean time to locate them based on each of the methods. The
plot in Figure 10 does not show any evidence to indicate that
the first method had a strong effect on the second, either
positively or negatively. However, Figure 11 shows that the
time to locate a file using the second method is reduced,
regardless of the technique used. While this preliminary data
does not support an overwhelming argument about the
interaction of each method, it does lead to the preliminary
conclusion that higher performance is associated with the
second technique applied by a particular user. Since both data
sets were nearly identical, it is safe to suppose the subjects
became increasingly more familiar with the directory structure
between techniques, regardless of their order of application.

VIII. CONCLUSION
In this paper, we discussed the critical needs, challenges,

and background associated with computer forensics. In
association with these challenges, we discuss the capabilities,
algorithms, and techniques associated with our visualization
environment for the visual resolution of the identified
challenges. Finally, we discuss new results of user studies
performed through the application of the developed
visualization capabilities. The visualization display was
developed and renders data from a selected region of the file
system residing on the hard drive of interest.

The use of filtered tree-maps in computer forensics as
proposed here is novel and offers many advantages over
traditional tree-maps. Additionally, the use of square blocks in
the manner proposed has not been examined. This system not
only uses visualization to represent a file system, but also is
specifically designed around the forensic process. The goal of
this project is to locate suspect files on a large hard drive. To
this end we put as much emphasis on the interaction
techniques as on the visualization techniques.

There are several widely used computer forensics toolkits,
namely: ILook [10], Encase [11], and Sleuthkit [12]. The
extent of visualization incorporated into these tools is
essentially explorer type interfaces. Thus, our work on
visualization goes far beyond what these tools provide.
However, these tools are very good at providing scripting and
other low level analysis tools. Our goal is not to compete with
these tools but rather, in the future, to integrate their results
into the visualizations and thus make a more usable and
effective set of capabilities.

Figure 10: Number of files located for each trial and method.

Figure 11: Mean time to locate consecutive files for each trial and method.

IX. REFERENCES
[1] AtStake Corporation. (2005). Available: http://www.atstake

.com
[2] Casey, E. (2006). Investigating sophisticated security breaches.

Communication of the ACM, 49(2), 48-55.
[3] Computer Emergency Response Team. (2005). Available:

http://www.cert.org
[4] Kelsey, C. A. (1997). Detection of Vision Information. In W. R. Hendee

& P.N.T. Wells (Eds.), The perception of visual information (Second
Edition)(p 51). New York: Springer_Verlag.

[5] Neisser, U. Cognitive Psychology. New York: Appleton-Century-Crofts;
1967.

[6] Tripwire, Inc, Available:
http://www.tripwire.com/resources/datasheets.cfm, September, 2004.

[7] Qt by trolltech. http://www.trolltech.com, October 2004.
[8] Schneiderman B., Tree Visualization with Tree-Maps: 2-d Space-Filling

Approach, ACM Transactions on Graphics, vol. 11(1), January, 1992,
pp. 92-99.

[9] SysAdmin, Audit, Networking, and Security (SANS) Institute. (2005).
Available: http://www.sans.org

[10] http://www.ilook-forensics.org/iLookv8.html
[11] http://www.guidancesoftware.com/products/ef_index.asp
[12] http://www.sleuthkit.org/index.php

