

Exemplifying Attack Identification and Analysis in a
Novel Forensically Viable Syslog Model

Steena Dominica Steven Monteiro
Dept. of Computer Science, UMC 4205

Utah State University
Logan, UT 84322

steena.m@aggiemail.usu.edu

Robert F. Erbacher
Dept. of Computer Science, UMC 4205

Utah State University
Logan, UT 84322

Robert.Erbacher@usu.edu

Abstract
This research builds on our method for validating syslog entries proposed in [5]. The goal of

the proposed method is to allow syslog files to be forensically viable. The goal with this phase
of the work is to implement the proposed method and evaluate the forensic validity of the
method under real-world conditions. This paper discusses that implementation and the ability
for the generated authentication logs and access fingerprints to both identify malicious activity
and identify the source of this activity. While work has been done to develop secure log files,
i.e., making them tamper resistant, there has been no prior work to ensure they are forensically
valid.

1. Introduction

This research aims to provide a mechanism that will validate and authenticate syslogs for
computer forensic analysis. Syslogs are often smoking guns [9] in an organization where a
computer or network attack has occurred due to the immense amount of information they
contain. Syslogs may also contain evidence of illegal or inappropriate activity by the user of an
individual system. Traditionally, when computer evidence needs to be collected, the entire
system is taken off-line and the hard drive treated as evidence. With a network attack, there
could be evidence in syslog files throughout the entire organization. This makes it unfeasible to
take the systems with potential evidence off-line, especially when considering the frequency at
which network based attacks actually occur. Since syslog entries are traditionally duplicated on
a central repository, the syslog facility provides a means by which the evidence can be collected
without taking systems off-line, assuming of course the syslog files can be made to be legally
admissible.

Computer forensics, a relatively new field of research, needs a method with appropriate
authentication mechanisms in place by which syslogs can be used as relevant evidence in court.
Syslogs, which have been designed more from an event logging perspective than an evidence-
oriented one, are system treasure maps that chart and pinpoint attacks and attack attempts. Over
the past few years, research on securing syslogs has yielded enhanced syslog protocols that
focus primarily on tamper prevention and detection. However, many of these protocols, though
effective from a security perspective, are inadequate when forensics needs comes into play.

Security research on logs has focused on securing audit logs and protecting them from
intrusion and malicious manipulations. This is exhibited in syslog variants such as
syslog_reliable [10] and syslog_ng [11]. These variants do not deal with the specific needs of
forensic viability. This essentially entails the validation of syslog entries as they are created as
well as providing resistance and detection of modifications and deletions. The research
presented by Jiqiang et al. [3] presents a schema that describes a secure logging architecture
from a forensic viewpoint. However, although the aim suggests securing audit logs for use in
forensic analysis, the method presented in the paper does not get into the necessary details of

validating log entries and the manner in which they will actually be scanned for their
authenticity or tested for their genuineness.

The goal of the research presented here is to create a forensically viable syslog facility. By
building on our proposed methodology described in [5], this work discusses our implementation
of the method and the ability for the method to identify attacks and analyze those attacks. No
other research has focused extensively on making syslogs forensically viable.

The work in [5] documents the background of previous syslog related work, the various
variants of the syslog protocol, their failings, and describes briefly the techniques that have
been used over time to secure logs, either system ones or audit logs. The authors show that the
proposed method satisfies all the goals of digital forensic evidence formulated by Dixon [2].

The mechanism proposed in [5] generates authentication traces, which are succinct messages
that compliment the corresponding syslog entry and comprise a message and digital fingerprints
of the entities involved. All the hosts on the network are assumed to be unsafe and therefore,
the transmission of the authentication traces between the server and each host system is secured
by using a challenge response mechanism, which is a modification of the Needham-Schroeder
protocol. The original protocol was formulated with the aim of securing communication
pathways between unsafe hosts.

2. Background

Every computer-based activity on a system typically leaves an electronic trace [9]. The level
of understandability provided by these traces and the credibility offered by them depends on the
level of security in place on the system. Electronic traces in verifiable forms can be considered
as digital evidence. In order to verify system log files we must ensure that the log files are
resistant to deletions and modifications; i.e., it may not be possible to prevent truncation of a
log file but such modifications must be detectable. Additionally, further verification must be
added to the syslog protocol to validate where the syslog entries came from. Specifically, this is
done using system fingerprints, user fingerprints, and application fingerprints.

The weakness of the syslog protocol [6] lies in the fact that it uses UDP, a connectionless
and unreliable protocol, stores system event information in plain text format, and transmits
system event data across the network in plain text format. With regard to the three components
of security—authenticity, confidentiality, and integrity—syslogs can be manipulated by a
malicious insider or an outside attacker by exploiting these inherent weaknesses. Thus, all three
components expected of security can be violated. The immense size of the syslog file, the lack
of a solid relationship between the entities that generate a syslog entry, the ease of availability
of tools like crypt-cat and netcat make compromising the authenticity, confidentiality, and
integrity easy.

Confidentiality of logs: Several open source network tools, such as tcpdump, can be used to
capture syslog entries that are transmitted in plain text to a central logging system. A wily
attacker can analyze the contents of these packets to determine the corresponding syslog entry.
This compromises the confidentiality of syslog files since the attacker now knows the kind of
spurious entries that should be injected into the syslog file to camouflage their activities.

Integrity of logs: Syslog entries that are stored on a central logging repository are open to
being manipulated by an attacker. In addition, the UDP protocol that is used to transmit the
syslog entries is exceedingly vulnerable to capture, replay, and various man-in-the middle
attacks.

Authenticity of syslogs: Currently, there is no means to forensically associate the system
and the service that generated a syslog entry. That is, there is no means to authenticate the fact
that a service on a system has generated an entry. Readily available tools such as netcat,

cryptcat, etc. can be used to flood a logging server and subject it to attacks such as intentional
flooding and denial of service.

Matt Bishop has defined authenticity, integrity, and confidentiality to be the basic tenets of
any system or entity that aims to be secure. The violation of any of these tenets results in the
entity being termed as vulnerable, such as the syslogs under consideration.

Our prior work [5] proposed a new electronic trace by using a modification of the Needham
Schroeder protocol [7]. The secure transmission of system fingerprints, user fingerprints, and
application fingerprints is ensured by using a modification of the Needham Schroeder protocol.
This protocol was developed to secure communication between two hosts by the use of session
keys, random numbers, and nonces. In this method, the session keys are replaced by public keys
for each system on the network. We term the public keys assigned to every authentic system,
KSystem. Similar to the original protocol, these keys are generated pseudo randomly at the
authentication module and are assigned to each of the systems. The weakness of the Needham
Schroeder protocol lies in the use of timestamps. In the originally suggested protocol,
timestamps were used explicitly. The use of timestamps explicitly enables the manipulation of
messages by changing the network clock and manipulating network latency. However, this is
eliminated in our proposed version due to the use of digital fingerprints, which are hashed
values of various system parameters and timestamps.

Research in [1] has assigned levels of credibility to forensic evidence similar to the Fujita
scale, which determines hurricane magnitudes. The level of evidence that this proposed
mechanism provides maps on to the C5 level, thereby implying that evidence is tamperproof
and asserts a match between independent sources of evidence, which in this case are the
authentication traces and syslogs. The evidence at this level, however, can be erroneous due to
temporal loss or data loss.

The simplicity of the protocol used for its transmission (UDP) and the plaintext format, in
which they are stored, make syslogs feeble sources of evidence. There is no way a patchy log
on a server can be used as evidence to prove the occurrence of an attack in a court of law. On
the same lines, the ease by which the syslog protocol can be tampered with reinforces the need
for a backbone umbrella mechanism in place that will still hold in the event that the syslog
mechanism fails. However, while positioning a forensic-friendly mechanism on the network,
making it secure and resilient against attacks such as the man-in-the-middle, spurious syslog
entry injection, etc.

Currently, there is no protocol in place that forensically links together every entity involved
in the generation of a syslog entry. The method that we propose ties together every entity
involved in the generation of a syslog entry using digital fingerprints and authentication traces.
Syslogs need a mechanism where the authenticity of every entity involved in the generation of a
syslog entry is vouched for. The digital fingerprints are generated using the RS algorithm.
Cryptographic algorithms were not exhaustively considered for the formulation of this
prototype and therefore, the RS algorithm was used here. A more intensive implementation in
the future will make use of cryptographic hash functions. However, the authentication of
hashes, which are indeed the digital fingerprints, is challenging and has yet to be explored in
further implementation.

3. Model Overview

Figure 1 shows an overview of our proposed model in the form of a UML sequence diagram.
Currently, in order for syslogs to be worthy of being considered as evidence in forensics, what
is needed is an authentication mechanism that reinforces and authenticates what the system log
file presents. The entities involved are the user, the application, the system, the client syslog

daemon, the authentication module, and the syslog server. The client syslog daemon and the
syslog server are not shown explicitly in this overview diagram.

System Log Challenge-Response Authentication

System User
User's
System

Server
Authentication

Module

Server
Syslog
Server

Syslog Activity on the Server

Client
Syslog

Daemon

Application

1.A Username and Password

4.A Launch Application

1.B Syslog()

1.C OK

2. {Systemprint, Userprint,RandomNumber}

3. {Systemprint, Userprint, RandomNumber-1, NONCE}KSystem

4.B {Userprint, App_print}NONCE

5. {TerminateMessage, App_print, Systemprint}NONCE .

6. {TerminateMEsage, Userprint, Systemprint}

Authentication Trace Generated and Stored
After Each Message

Authentication Traces on
the Server

Figure 1: Sequence diagram of the proposed system. The entities are
represented along the x-axis and time is represented along the y-axis.

In our proposed protocol, there are two servers, an authentication server and a logging
server. The authentication server records every authentication that occurs and maintains their
timestamps. Since this server needs to act as a form of backup in the event that system logs on
the logging server are tampered with or additional evidence is needed to verify a claim, it will
have a minimum number of processes running, limited accessibility, and constrained resource
availability. Further, this server can decipher the entries in the individual prints and verify the
authenticity of a fingerprint. The logging server stores actual log entries and is the main storage
system for these log entries.

In addition to the background processes of syslog generation and authentication trace
generation, which are umbrella processes that exist throughout a session, the proposed approach
comprises three main steps, which in turn comprise one or more phases within themselves.
More details of these steps, including their formal specification, can be found in [5].

3.1 User authentication

This is based on desired login authentication procedures and is geared toward ensuring that
only authorized users access the system. The user is authenticated by the server.

3.2 Challenge response before the user, system, and application become active

This step encapsulates and comprises the generation of user fingerprints, application
fingerprints, and system fingerprints. Furthermore, in order to cement and secure the
transmission of these fingerprints and the authentication traces, which are generated by
individual systems, several challenge response steps have been incorporated.

• Phase 1: System Connection Establishment
• Phase 2: System Connection Establishment Response
• Phase 3: Application Event Entry Generation

3.3 Messages log the termination of the application, logging off of the user, and the
shutting off the system

This authentication mechanism ensures that an entity granted login privileges is logged in
and is the entity sending event messages. However, with regard to computer forensics, a
mechanism to verify the termination of an authorized entity is also needed. This step details a
secure and logged termination of the entities involved in the generation of a syslog entry.

• Phase 1: Application Termination
• Phase 2: System Connection Termination

4. Fingerprints

In physical forensics, fingerprints are one of the key factors that reveal evidence about the
perpetrator or identify key entities (people or objects) involved in a crime. Creating digital
versions of fingerprints of every entity involved in the generation of a syslog entry promotes
and emphasizes the need to make every entity responsible for ensuring its forensic viability.

4.1 User Fingerprints

User fingerprints tightly bind the user and the system used. The user print can be considered
as simulating a real life fingerprint. When a fingerprint is considered in the real world, factors
such as location and time are also taken into account before arriving at conclusions. Thus, for
the cyber version of user fingerprints, similar types of information must be included; i.e., user
identifying characteristics, time, and system identifying characteristics. This ties a specific user
to a particular system at a specific time. More specifically, we propose using the following to
create a user fingerprint:

• Username and password
• System mac address
• Login time

4.2 Application Fingerprints

Application fingerprints are similar to user fingerprints. The application fingerprint will be
generated for every application that is launched on a system. Their primary role is to identify
and distinguish between legal applications and illegal ones launched by specific users on a
system. As with user fingerprints, the goal is to provide as much identifying information as
possible. In this case, we are attempting to validate what application is being run, by whom,
when, and from where. Thus, application fingerprints would use the following pieces of
information:

• Launch time
• Username
• System mac address
• Application identifier

4.3 System Fingerprints

System fingerprints are often used by operating systems manufacturers to register the system
that the operating system was installed on and ensure it is not transferred to a new system in
violation of the operating system license. The concept of system fingerprints essentially relies
on the fact that once deployed most systems rarely have their configuration change, especially

in business environments. For home users, while some sophisticated users will upgrade
individual components of their system, the majority of home users will not. Many different
characteristics can be used to identify a system uniquely. Some possibilities include:

• The number of processors
• Disk space
• System mac address
• CPU ID
• Installed applications
• Disk drive identifier, serial number

4.4 Authentication Traces

An authentication trace is an entry that is generated on every system on the network and
records the generation of system, user, and application fingerprints along with the associated
timestamps. Authentication traces on each system can be viewed only by administrators. The
traces will typically be a message along with the prints and the timestamp of the event.

5. Fingerprint Generation

User fingerprints, application fingerprints, and system fingerprints are generated using the
RS hashing algorithm, which is known to have low collision rate. The RS algorithm, which is a
general-purpose hashing algorithm developed by Robert Sedgwick [8] is used to generate
hashes, i.e., fingerprints.

Robert Sedgwick’s hashing algorithm is a rotative hashing algorithm that uses rotative
hashing [1]. In rotative hash functions, unlike its counterpart, the values are bit-shifted.
Sometimes combinations of both right and left bit shifts are used. For increased security, bit
shifts are sometimes prime numbers. The intermediate value that is yielded at each step is added
to an aggregative value. The result that is yielded is the value of the final aggregation. An
example:

)()(1 qtpthashhash >>⊗<<⊕= −

The algorithm is coded as follows. However, different keys are used for the user, application,
and the system fingerprints.

for(int keyLength=0; keyLength<fingerPrintKey.length();
 keyLength++){
 long intermediateUserChar = (long)
 fingerPrintKey.charAt(keyLength);
 fingerPrintH = (fingerPrintH << 4) + intermediateUserChar;
 fingerPrintG = fingerPrintH & 0xF0000000L;
 if (fingerPrintG != 0)
 fingerPrintH ^= fingerPrintG >>> 24;
 fingerPrintH &= ~fingerPrintG;
}
return (long)(fingerPrintH);

This user print yields 155990563

For the user fingerprint, the key is a concatenation of the username, the time of user log in,

and the user ID that was generated when he/she logged in. Keys in a hash function are required

to be unique so as to avoid collisions and enable faster look up. The keys here are concatenation
of three parameters that will most certainly be unique across logins in an organization.

The system fingerprint is generated in the same way. We have found that the hard disk serial
ID that is hardcoded by a manufacturer is the only unique parameter than can actually
distinguish one system from another. The hard drive serial IDs, which are assigned to every
partition on the hard drive, were another parameter that was considered. However, these IDs
can be changed when the disk is reformatted. Another parameter that was considered was the
CPU ID. A run of an application on laboratory systems revealed that all CPU IDs that belong to
computers ordered in bulk are the same. The MAC address was not considered as a potential
parameter due to the ease by which a person with reasonable computer knowledge can change
and even spoof a MAC address. The key used in this case is the hard disk serial ID. This was
identified and verified to be unique. Therefore, the hard disk serial ID and the system bootup
time are together used as a key for generating the system fingerprint. The system print is
generated in the following way:

systemFingerPrint(){
 String HDDSerialNumber= "97LET9BET";
 String systemFingerPrintKey=
 HDDSerialNumber.concat(systemBootupTime);

 for(int keyLength=0; keyLength<systemFingerPrintKey.length();
 keyLength++){
 long systemIntermediateChar=(long)
 systemFingerPrintKey.charAt(keyLength);
 systemPrintH = (systemPrintH << 4) + systemIntermediateChar;

 systemPrintG = systemPrintH & 0xF0000000L;
 if (systemPrintG != 0)
 systemPrintH ^= systemPrintG >>> 24;
 systemPrintH &= ~systemPrintG;
 }
return (long)(systemPrintH);
}

An example of a system fingerprint yielded by this method 161044579

applicationFingerPrint(String applicationName, long
applicationID, String appLaunchTimestamp) {

 for(int keyLength=0;
 keyLength<applicationFingerPrintKey.length();
 keyLength++){
 long appIntermediateChar = (long)
 applicationFingerPrintKey.charAt(keyLength);
 appPrintH = (appPrintH << 4) + appIntermediateChar;
 appPrintG = appPrintH & 0xF0000000L;
 if (appPrintG != 0)
 appPrintH ^= appPrintG >>> 24;
 appPrintH &= ~appPrintG;
 }

return (long)(appPrintH);
}

An example of an application print yielded by this method 76274804

The application fingerprint is necessary in order to validate applications. Here, a

concatenation of the username, application ID, and the applicationTimeStamp is used as the key
in the fingerprint generation.

The extent of this implementation is the generation of the authentication traces, digital
fingerprints, and the simulated syslog entries. The implementation was carried out with the aim
of deriving a prototype of the proposed method. The challenge response mechanism will be
incorporated as part of the remaining implementation.

6. Backtracking an Attack

Syslog entries typically comprise the following parameters—hostname, facility, priority,
message, and timestamp. This implementation simulated a syslog logging facility. The purpose
of this was to compare an authentication trace and be able to get to the fingerprint from the
syslog. After an attack occurs, parameters from the syslog can be used to obtain the
corresponding entry contained in the authentication trace. An important point to be noted is that
time is a crucial factor in the generation of an authentication trace and the corresponding syslog
entry. The user, application, and system are the facilities considered in this implementation of
syslogs. Their priorities are hardcoded here since this implementation mainly serves as an
example and validation of how authentication traces and syslog entries can be used in tandem to
trace back and form evidence. The research in [5] suggested that authentication traces can be
used to back track to an attack. This paper shows this can be actually carried out. This is
because every parameter that is considered in the generation of a fingerprint can be essentially
obtained from the corresponding syslog entry in the log file. Therefore, this paper shows the
way in which attacks detected in the syslog entry can be backtracked using a combination of the
authentication traces, the syslog file, and the hash function (here, the RS algorithm).
An example:

The following authentication trace shows a login by user “steena” and the corresponding
syslog entry.

steena logged in at 2008-02-06 12:49:33 with user ID
 7524389880967786033 with user finger print 155990563 the
system print is161044579
C:\Program Files\Internet Explorer\IEXPLORE.exe launched at
 2008-02-06 12:49:41 with ID 1524843500148472672 with
fingerprint 88504721

The corresponding syslog entries with format host name, facility, priority, message, and

timestamp.

localhost 4 10 steena has logged in at 2008-02-06 12:49:33
localhost 6 12 C:\Program Files\Internet Explorer\IEXPLORE.exe
launched at 2008-02-06 12:49:41

Repeated bad logins at a particular system will yield corresponding authentication traces and
syslog entries. However, the occurrence of repeated bad logins will be logged by the
authentication traces and not by the system logs unless they are configured to do so.

Incorrect login with username: steena occurred at2008-02-07
04:50:02 with userID 56032638045929763with userprint
 188996098
 Incorrect login with username: steena occurred at2008-02-07
04:50:28 with userID 8936243886107892818with userprint
 188996200
 Incorrect login with username: steena occurred at2008-02-07
04:50:43 with userID 2404564924573438423 with userprint
 188996163

An attack by a malicious insider will cause the username, which is known to be exploited. In
this simple emulation of system logs, we have explicitly logged a bad login instead of a series
of repeated logins by a valid user.

6.1 Reconstruction of a User Fingerprint

The user fingerprint comprises the username, the user ID, and the time of login. These values
can be obtained from the syslog entry. A hash of these parameters using the RS function will
yield the corresponding fingerprint. The absence of authentication traces would only reveal the
persistent login by user “steena.” A closer examination of the system logs and its corresponding
authentication trace can even possibly reveal the identity of the person behind the attack. A
small script to check and match users who have already logged in and their log in times can
possibly reveal this. A more complex implementation aims to assign appropriate priorities and
facility numbers to every entity involved in the system.

An important point to be noted while logging events to a central repository is that the local
system time for each individual system should be used instead of the server time. This is
because authentication traces are generated and are representative of activity by entities on
those individual systems. The use of server time would lead to misinterpretation of events on
those systems. This was noted during the current implementation when entries were being
logged successfully but had a clear disparity with regard to timestamps in their corresponding
authentication trace entries.

7. Use of Authentication Traces and Syslogs Under Certain Scenarios

Authentication traces and syslogs can be used in other circumstances other than backtracking
an attack, which of course, is its primary aim. The three scenarios below attempt to exemplify
some of these characteristics. For these scenarios, consider the fictitious entity SecurityVille.
SecurityVille is an organization where every user has a dedicated system and a login username
and password. Andy is the administrator; Fred is the forensic analyst; Steve is the malicious
insider, who is also an employee; William is a wily external attacker, and Arby is another
employee. Authentication traces are maintained on every system and on the server. Syslogs are
maintained only on the server.

7.1 Scenario One: Syslog File Deletion

The SecurityVille network has been taken offline due to an attack by William. Fred knowing
the immense repository of information that syslogs contain begins searching for the syslog file
on the server. However, William knowing this too, has deleted it.

The authentication traces serve as complimentary evidence. Although the fingerprints are
indecipherable at a glance, a further inspection of the authentication traces can yield an almost
complete reconstruction of the syslog file, thereby showing the origin of the attack, its modus
operandi, and to a limited extent the severity of the attack.

7.2 Scenario Two: Spurious Entry Injection into the Syslog File

During a fortnightly inspection of the syslog file, Andy notices that certain entries appear to
be invalid, i.e., not matching the authentication traces. Clearly, someone has managed to alter
the syslog file on the server. The corporate network logs, router logs, and switch logs do not
reveal any suspicious activity. As it happens, the attack originated from an internal source:
Steve has managed to gain access to the server and injected spurious entries into the syslog.

An inspection of his authentication trace reveals that he has managed to install a rogue
application on his system. His traces reveal the name of an unknown application.

7.3 Scenario Three: Application Updates

FortyTwo, which is an accounting software used by the employees is scheduled to undergo
updates every two weeks.
In the method proposed here, before an application launches, it needs to go through the
challenge response mechanism. The application fingerprint is then calculated on the fly. When
the application has been updated and has to restart, its print is recalculated and the restart is
treated as the launch of a new application. Since application IDs are assigned on the fly and are
documented, the automatic updates would not affect the generation of the application prints and
their transmission. Currently, the authentication trace generation has no mechanism to
determine if an update has occurred or if the user has merely chosen to close and launch the
application again. However, a close examination of the traces across systems and the system
logs would reveal this update if a pattern of restarting an application is seen across multiple
systems. Further, since the application name is listed in the authentication trace, this pattern will
be readily found. An application update occurring while the application is not running would
not lead to any suspicious traces, the desired result.

8. Conclusions

The proposed model aims to provide a mechanism to authenticate and validate syslogs.
Although syslogs have been researched extensively from the security perspective, they have not
received sufficient attention from the forensics point of view and the need for legal
admissibility. The fingerprints assigned to every entity involved in system log generation will
enable the validation of these entities. More importantly, since digital evidence is treated in the
same way as documentary evidence [4], a means to authenticate and verify its authenticity is
needed. The proposed model aims to provide resilience against common attacks launched
against syslogs—system log truncation and man-in-the-middle attacks, which are currently of
the most significant problems, associated with using system logs as evidence in court. For

instance, the credibility of system log files as evidence could easily be attacked in court and
invalidated.

With the proposed method, if a malicious insider carries out suspicious activity, this activity
can be traced back to the offender. Their system identity can then be forensically verified by
hashing the values available in the syslog file and the authentication traces, using the RS
algorithm, and matching them with the prints in the authentication traces. This mechanism is
limited to be able to trace back to insiders. The ability to trace back to an outside attacker is
beyond the scope of our proposed method, though the internal compromised identity would be
identified.

9. Future Work

This paper focuses on the examination of the implementation of components of the proposed
model. The paper also examines how the model would be used and behaves in real world
scenarios. This is merely the first step in implementing and validating the proposed model.
Already, the effectiveness of the model is becoming apparent. Next steps will include a more
complete testing platform and actual simulation of real world attacks and anomalies. These tests
will validate the resilience of the proposed method against expected attacks, for instance:

1. Denial of service attacks—the aim here is to bombard the server with syslog messages
and try to use the authentication traces to recover the system and the network again.
Since authentication traces are more succinct, informative, and secure than the
traditional syslog messages, the ability to recover a system and identify the attack will
be the focus. This would test the effectiveness of the authentication traces to actually
hold the framework in place when the server is attacked from outside the local network.

2. Attacks against the syslog file—truncation, spurious entry injection, and deletion. One
of the main issues that syslogs have to deal with is the abrupt truncation and deletion of
syslog entries in the log file. An attacker could randomly delete syslog file entries or
the syslog file as a whole. Syslog entries can be recovered by referring back to the
authentication traces.

3. Man-in-the middle attacks against the challenge response framework. This is an attack
against our proposed protocol at a fundamental level. This test will validate the
resilience of the protocol against attempts to break down the challenge response
framework.

4. Rogue applications—detection and identification of rogue applications on the network.
The ability for rogue applications to compromise the integrity of the syslog files
remains a concern. Thus, the goal of this test is to validate the resilience of the
application fingerprints and the corresponding authentication traces.

10. References

[1] Casey, E., “Error, Uncertainty, and Loss in Digital Evidence,” International Journal of Digital Evidence, Vol. 1,
No. 2, 2002, pp. 1-45.

[2] Dixon, P.D., “An Overview of Computer Forensics,” IEEE Potentials, Vol. 24, No. 5, Dec. 2005, pp. 7-10.
[3] Jiqiang, L., Zhen, H., and Zengwei, L., “Secure Audit Logs Server to Secure Logs to Support Computer

Forensics in Criminal Investigations,” Proceedings of the 2002 IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering, October 2002.

[4] Kurzban, S., “Authentication of Computer Generated Evidence in United States Federal Courts.” The Journal of
Law and Technology, 1995.

[5] Monteiro, S., and Erbacher, R.F., “An Authentication and Validation Mechanism for Analyzing Syslogs
Forensically,”ACM SIGOPS Operating Systems Review, 2008, To Appear.

[6] Nawyn, K. E., “A Security Analysis of System Event Logging with Syslog.” SANS Institute, no. As part of the
Information Security Reading Room. (2003).

[7] Needham, R. and Schroeder, M., “Using Encryption for Authentication in Large Networks of Computers,”
Communications of the ACM, Vol. 21, No. 12, 1978, pp 993-999.

[8] Sedgwick, R., ALGORITHMS, Second Edition, Addison-Wesley Publishing, Company, Inc., 1988.
[9] Volovino, L., “Electronic Evidence and Computer Forensics,” Communications of the Association for

Information Systems, Vol. 12, 2003, pp. 457-468.
[10] http://www.ietf.org/internet-drafts/draft-ietf-syslog-sign-21.txt
[11] http://www.balabit.com/network-security/syslog-ng/

